Anterior Post Siguiente Post
Tantos temas interesantes, tan poco tiempo ;-) Si tienen que elegir uno, no sabría cual recomendar.
Benford"s Law and email sizes http://stsimb.irc.gr/2012/02/05/benfords-law-and-email-sizes/
Benford"s Law and email subjects http://blog.postmaster.gr/2012/02/05/benfords-law-and-email-subjects/
Pasad sin miedo, aquí hoy no hablamos del frío que hace http://pequenoldn.librodenotas.com/pequenoeditorial/1314/pasad-sin-miedo-aqui-hoy-no-hablamos-del-frio-que-hace
Cada uno en su región y Voronoi en la de todos http://amazings.es/2011/12/23/cada-uno-en-su-region-y-voronoi-en-la-de-todos/
Voronoi diagram http://en.wikipedia.org/wiki/Voronoi_diagram
Voronoi Diagrams http://www.ics.uci.edu/~eppstein/gina/voronoi.html
Thomas Penyngton Kirkman http://www-history.mcs.st-and.ac.uk/Biographies/Kirkman.html
Elsevier — my part in its downfall http://gowers.wordpress.com/2012/01/21/elsevier-my-part-in-its-downfall/ The Dutch publisher Elsevier publishes many of the world"s best known mathematics journals... ..For many years, it has also been heavily criticized for its business practice
The Cost of Knowledge http://thecostofknowledge.com/
Why do symplectic manifolds need to be closed? http://sbseminar.wordpress.com/2012/01/14/why-do-symplectic-manifolds-need-to-be-closed/
Gauss" Law http://unapologetic.wordpress.com/2012/01/11/gauss-law/
Faraday"s Law http://unapologetic.wordpress.com/2012/01/14/faradays-law/
Ampère"s Law http://unapologetic.wordpress.com/2012/01/30/amperes-law/
Conservation of Charge http://unapologetic.wordpress.com/2012/02/01/conservation-of-charge/
Maxwell"s Equations (Integral Form) http://unapologetic.wordpress.com/2012/02/02/maxwells-equations-integral-form/
Demostración visual de la paradoja del cubo de Ruperto http://gaussianos.com/demostracion-visual-de-la-paradoja-del-cubo-de-ruperto/
Why do we enjoy maths history misconceptions? http://travels.peterrowlett.net/2012/02/why-do-we-enjoy-maths-history.html
Group representations http://www.physics.indiana.edu/~dermisek/QFT_08/qft-II-19-2p.pdf
Luis Santaló http://en.wikipedia.org/wiki/Luis_Santal%C3%B3
Luis Santaló http://rinconmatematico.com/biografias/santalo.htm
Luis Santaló En memoria http://www.fceia.unr.edu.ar/secyt/apuntes/Santalo/Santalo.htm
Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mzm&paperid=6253&option_lang=eng
Computing the permanent http://en.wikipedia.org/wiki/Computing_the_permanent
Permanent http://en.wikipedia.org/wiki/Permanent The permanent of a square matrix in linear algebra, is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix. Both permanent and determinant are special cases of a more general function of a matrix called the immanant.
Harald August Bohr http://www-history.mcs.st-and.ac.uk/Biographies/Bohr_Harald.html
Henri Poincaré http://eltamiz.com/2012/01/19/henri-poincare/
"Women Worse at Math than Men" Explanation Scientifically Incorrect, MU Researchers Say http://munews.missouri.edu/news-releases/2012/0118-%E2%80%9Cwomen-worse-at-math-than-men%E2%80%9D-explanation-scientifically-incorrect-mu-researchers-say/
Doodling in Math Class: Spirals, Fibonacci, and Being a Plant [2 of 3] http://www.youtube.com/watch?v=lOIP_Z_-0Hs
Random matrices: The Four Moment Theorem for Wigner ensembles https://terrytao.wordpress.com/2011/12/12/random-matrices-the-four-moment-theorem-for-wigner-ensembles/
What is a symplectic manifold, really? http://sbseminar.wordpress.com/2012/01/09/what-is-a-symplectic-manifold-really/
My Links http://delicious.com/ajlopez/mathematics
Nos leemos!
Angel "Java" Lopez http://www.ajlopez.com http://twitter.com/ajlopez
|