Siguiente Post
Geometría es un tema que en este siglo me lo encuentro cada vez más, tanto relacionado con la teoría de grupos, como con teorías físicas. Una primera lista de los enlaces que he visitado. Vean en el fragmento de la Wikipedia, cómo con Descartes la geometría va fusionándose con el álgebra. Gran parte de la búsqueda de simetría en las teorías físicas, es una lucha por volver a lo geométrico, sin depender de sistema de coordenadas o marco de referencia. Visiten también lo que hay sobre el grupo E8.
http://en.wikipedia.org/wiki/Geometry
Geometry (Ancient Greek: γεωμετρία; geo- "earth", -metron "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a body of practical knowledge concerning lengths, areas, and volumes, with elements of a formal mathematical science emerging in the West as early as Thales (6th Century BC). By the 3rd century BC geometry was put into an axiomatic form by Euclid, whose treatment—Euclidean geometry—set a standard for many centuries to follow.[1] Archimedes developed ingenious techniques for calculating areas and volumes, in many ways anticipating modern integral calculus. The field of astronomy, especially mapping the positions of the stars and planets on the celestial sphere and describing the relationship between movements of celestial bodies, served as an important source of geometric problems during the next one and a half millennia. Both geometry and astronomy were considered in the classical world to be part of the Quadrivium, a subset of the seven liberal arts considered essential for a free citizen to master.
The introduction of coordinates by René Descartes and the concurrent developments of algebra marked a new stage for geometry, since geometric figures, such as plane curves, could now be represented analytically, i.e., with functions and equations. This played a key role in the emergence of infinitesimal calculus in the 17th century. Furthermore, the theory of perspective showed that there is more to geometry than just the metric properties of figures: perspective is the origin ofprojective geometry. The subject of geometry was further enriched by the study of intrinsic structure of geometric objects that originated with Euler and Gauss and led to the creation of topology and differential geometry.
In Euclid's time there was no clear distinction between physical space and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation, and the question arose: which geometrical space best fits physical space? With the rise of formal mathematics in the 20th century, also 'space' (and 'point', 'line', 'plane') lost its intuitive contents, so today we have to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meaning) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they only approximately resemble at small scales. These spaces may be endowed with additional structure, allowing one to speak about length. Modern geometry has multiple strong bonds with physics, exemplified by the ties between pseudo-Riemannian geometry and general relativity. One of the youngest physical theories, string theory, is also very geometric in flavour.
Geometric visual hallucinations http://rstb.royalsocietypublishing.org/content/356/1407/299.full.pdf
The Geomblog: Geometry @ Barriers http://geomblog.blogspot.com/2010/09/geometry-barriers.html
Geometric algorithms The Universe of Discourse : A new proof that the square root of 2 is irrational http://blog.plover.com/math/sqrt-2-new.html
Euclides.org http://www.euclides.org
George W. Hart http://www.georgehart.com/ Geometric sculptures and puzzles
The Museum of Mathematics http://momath.org/
Triángulos disjuntos (Puzzle) http://gaussianos.com/triangulos-disjuntos/
Touch Trigonometry http://www.touchtrigonometry.org/
An introduction to the ancient and modern geometry of conics http://openlibrary.org/works/OL7563147W/An_introduction_to_the_ancient_and_modern_geometry_of_conics
Superformula http://en.wikipedia.org/wiki/Superformula
Pappus chain http://en.wikipedia.org/wiki/Pappus_chain
Physics intuitions: Forwards multiplying, backwards dividing http://commonsensequantum.blogspot.com/2011/04/forwards-multiplying-backwards-dividing.html
Physics intuitions: Morley triangle derived from the tripling of an angle http://commonsensequantum.blogspot.com/2011/03/morley-triangle-derived-from-tripling.html
Physics intuitions: Archimedes angle trisection or tripling? http://commonsensequantum.blogspot.com/2011/03/archimedes-angle-trisection-or-tripling.html
Angle trisection http://en.wikipedia.org/wiki/Angle_trisection#With_a_marked_ruler
Physics intuitions: Playing with angles http://commonsensequantum.blogspot.com/2011/03/playing-with-angles.html
Albrecht Dürer"s ruler and compass constructions http://divisbyzero.com/2011/03/22/albrecht-durers-ruler-and-compass-constructions/
PLaSM http://plasm.net/ functional language for computing with geometry
Manifolds « The Unapologetic Mathematician http://unapologetic.wordpress.com/2011/02/22/manifolds/
Heron's Formula http://golem.ph.utexas.edu/category/2011/02/herons_formula.html
La construccion del dodecaedro en los elementos de Euclides http://gaussianos.com/la-construccion-del-dodecaedro-en-los-elementos-de-euclides/
Introduction to Clifford Algebra http://www.av8n.com/physics/clifford-intro.htm
Clifford Algebras http://math.ucr.edu/home/baez/octonions/node6.html Cli ord Algebras, Cli ord Groups, and a Generalization of the Quaternions:
The Pin and Spin Groups http://www.cis.upenn.edu/~cis610/clifford.pdf
AIM math: Representations of E8 http://www.aimath.org/E8/
Dirac belt trick http://gregegan.customer.netspace.net.au/APPLETS/21/21.html
Three geometric theorems http://divisbyzero.com/2010/12/24/three-geometric-theorems/
What is E8? http://www.aimath.org/E8/e8.html
Three geometric theorems « Division by Zero http://divisbyzero.com/2010/12/24/three-geometric-theorems/
A Geometric Theory Of Everything http://www.science20.com/quantum_diaries_survivor/geometric_theory_everything
A Geometric Theory of Everything: Scientific American http://www.scientificamerican.com/article.cfm?id=a-geometric-theory-of-everything
A Geometric Theory of Everything « Not Even Wrong http://www.math.columbia.edu/~woit/wordpress/?p=3292
E8 (mathematics) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/E8_(mathematics)
Cayley graphs and the geometry of groups « What"s new http://terrytao.wordpress.com/2010/07/10/cayley-graphs-and-the-geometry-of-groups/
On growth and form : Thompson, D'Arcy Wentworth, 1860-1948 http://www.archive.org/details/ongrowthform00thom
The Geometry of the MRB constant http://math-blog.com/2010/11/21/the-geometry-of-the-mrb-constant/
La línea de Simson | Gaussianos http://gaussianos.com/la-linea-de-simson/
Pictures of Modular Curves (III) | The n-Category Café http://golem.ph.utexas.edu/category/2010/11/pictures_of_modular_curves_iii.html
Reflections and Rotations http://www.youtube.com/watch?v=gJMJBc-f9IQ&feature=related
Trigonometric functions and rational multiples of pi http://divisbyzero.com/2010/10/28/trigonometric-functions-and-rational-multiples-of-pi/
Finding Haystacks (and Similar Structures) in Geometry http://valis.cs.uiuc.edu/%7Esariel/papers/10/barriers/barriers.pdf
Los centros del triangulo: el punto de Lemoine http://gaussianos.com/los-centros-del-triangulo-el-punto-de-lemoine/
A Geometric Paradox | Futility Closet http://www.futilitycloset.com/2010/09/04/a-geometric-paradox/
Physics intuitions: Alternative Pythagorean quadruples and other extensions to Pythagoras theorem http://commonsensequantum.blogspot.com/2010/08/alternative-pythagorean-quadruples-and.html
Physics intuitions: A Pythagorean relation for any triangle? http://commonsensequantum.blogspot.com/2010/08/pythagorean-relation-for-any-triangle.html
Los centros del triángulo: el centro de la circunferencia de los nueve puntos | Gaussianos http://gaussianos.com/los-centros-del-triangulo-el-centro-de-la-circunferencia-de-los-nueve-puntos/
Physics intuitions: Lost theorem about angular proportions http://commonsensequantum.blogspot.com/2010/06/lost-theorem-about-angular-proportions.html
Variations on dividing circular area into equal parts http://commonsensequantum.blogspot.com/2010/03/variations-on-dividing-circular-area.html
Bill Kerr: 40 maths shapes challenges http://billkerr2.blogspot.com/2009/08/40-maths-shapes-challenges.html
GeoGebra http://www.geogebra.org/cms/ Free mathematics software for learning and teaching
Quantum mechanics and geometry http://sbseminar.wordpress.com/2009/11/16/quantum-mechanics-and-geometry/
Rhombus tilings and an over-constrained recurrence http://sbseminar.wordpress.com/2009/10/21/rhombus-tilings-and-an-over-constrained-recurrence/
Historia de la Geometria http://www.euclides.org/menu/articles/historiadelageometria.htm
Mis Enlaces http://www.delicious.com/ajlopez/geometry
Nos leeemos!
Angel "Java" Lopez http://www.ajlopez.com http://twitter.com/ajlopez
|