Anterior Post Siguiente Post
Más enlaces y novedades. Incluso hay nuevos resultados sobre una conjetura de Goldbach, y la distribución de los números primos de a pares. Hace unos meses, estuve leyendo sobre densidad, un tema muy interesante donde se junta combinatoria y teoría de números.
abc: the story so far | The Aperiodical http://aperiodical.com/2013/05/abc-the-story-so-far/
Primes really do stick together | The Aperiodical http://aperiodical.com/2013/05/primes-really-do-stick-together/ "The author has succeeded to prove a landmark theorem in the distribution of prime numbers. … We are very happy to strongly recommend acceptance of the paper for publication in the Annals."
Posible avance en el estudio de los primos gemelos - Gaussianos | Gaussianos http://gaussianos.com/posible-avance-en-el-estudio-de-los-primos-gemelos/
Integer sequence review: A051200 | The Aperiodical http://aperiodical.com/2013/05/integer-sequence-review-a051200/
Primes gotta stick together | The Aperiodical http://aperiodical.com/2013/05/primes-gotta-stick-together/
(Parece ser que) Demostrada la conjetura débil de Goldbach - Gaussianos | Gaussianos http://gaussianos.com/parece-ser-que-demostrada-la-conjetura-debil-de-goldbach/
All odd integers greater than 7 are the sum of three odd primes! | The Aperiodical http://aperiodical.com/2013/05/all-odd-integers-greater-than-7-are-the-sum-of-three-odd-primes/
soft question - Why do we study prime ideals? - Mathematics Stack Exchange http://math.stackexchange.com/questions/389837/why-do-we-study-prime-ideals
First proof that infinitely many prime numbers come in pairs : Nature News & Comment http://www.nature.com/news/first-proof-that-infinitely-many-prime-numbers-come-in-pairs-1.12989
The Paradox of the Proof | Project Wordsworth http://projectwordsworth.com/the-paradox-of-the-proof/ On August 31, 2012, Japanese mathematician Shinichi Mochizuki posted four papers on the Internet. The titles were inscrutable. The volume was daunting: 512 pages in total. The claim was audacious: he said he had proved the ABC Conjecture, a famed, beguilingly simple number theory problem that had stumped mathematicians for decades.
A Most Perplexing Mystery | Gödel's Lost Letter and P=NP http://rjlipton.wordpress.com/2013/05/06/a-most-perplexing-mystery/ "[We] recommend to all cryptographic users to stop using medium prime fields."
Number theory - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Number_theory
Abel Prize to Pierre Deligne | Not Even Wrong http://www.math.columbia.edu/~woit/wordpress/?p=5674
Pierre Deligne wins the 2013 Abel Prize | Gowers's Weblog http://gowers.wordpress.com/2013/03/20/pierre-deligne-wins-the-2013-abel-prize/
The Aperiodical | The Abel Prize Laureate 2013: Pierre Deligne http://aperiodical.com/2013/03/abel-prize-2013-pierre-deligne/
The work of Pierre Deligne http://www.abelprize.no/c57681/binfil/download.php?tid=57753 by W.T.Gowers
The Aperiodical | ABC, as easy as pp1-40 http://aperiodical.com/2013/03/abc-as-easy-as-pp1-40/
A Panoramic Overview of Inter-universal Teichm¨uller Theory http://www.kurims.kyoto-u.ac.jp/~motizuki/Panoramic%20Overview%20of%20Inter-universal%20Teichmuller%20Theory.pdf
On Fermat's Last Theorem for n = 3 AND n = 4 http://wstein.org/edu/2010/414/projects/ohana.pdf
Fermat's Last Theorem: Fermat's Last Theorem: Proof for n=3 http://fermatslasttheorem.blogspot.com.ar/2005/05/fermats-last-theorem-proof-for-n3.html
(Vídeo) Explicando con música la aritmética modular - Gaussianos http://gaussianos.com/video-explicando-con-musica-la-aritmetica-modular
La sorprendente criba de la parábola - Gaussianos http://gaussianos.com/la-sorprendente-criba-de-la-parabola/
Lagrange's four-square theorem - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Lagrange%27s_four-square_theorem
Jacobi's four-square theorem - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Jacobi%27s_four-square_theorem
15 and 290 theorems - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/15_and_290_theorems The 15 theorem of John H. Conway and W. A. Schneeberger (Conway–Schneeberger Fifteen Theorem), proved in 1993, states that if an integral quadratic form with integer matrix represents all positive integers up to 15, then it represents all positive integers.
Brun sieve - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Brun_sieve
Natural density - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Natural_density
Schnirelmann density - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Schnirelmann_density
FINE ASYMPTOTIC DENSITIES FOR SETS OF NATURAL NUMBERS http://www.dm.unipi.it/~dinasso/papers/24.pdf
The asymptotic density of sequences http://www.ams.org/journals/bull/1951-57-06/S0002-9904-1951-09543-9/S0002-9904-1951-09543-9.pdf Our purpose is to outline the recent work on the asymptotic or limit density of sets of positive integers... The related concept of Schnirelmann density is touched upon...
Mis Enlaces http://delicious.com/ajlopez/numbertheory
Nos leemos!
Angel "Java" Lopez http://www.ajlopez.com http://twitter.com/ajlopez
|