Angel "Java" Lopez en Blog

Publicado el 19 de Mayo, 2013, 7:30

Anterior Post 
Siguiente Post

Más enlaces y novedades. Incluso hay nuevos resultados sobre una conjetura de Goldbach, y la distribución de los números primos de a pares. Hace unos meses, estuve leyendo sobre densidad, un tema muy interesante donde se junta combinatoria y teoría de números.

abc: the story so far | The Aperiodical
http://aperiodical.com/2013/05/abc-the-story-so-far/

Primes really do stick together | The Aperiodical
http://aperiodical.com/2013/05/primes-really-do-stick-together/
"The author has succeeded to prove a landmark theorem in the distribution of prime numbers. … We are very happy to strongly recommend acceptance of the paper for publication in the Annals."

Posible avance en el estudio de los primos gemelos - Gaussianos | Gaussianos
http://gaussianos.com/posible-avance-en-el-estudio-de-los-primos-gemelos/

Integer sequence review: A051200 | The Aperiodical
http://aperiodical.com/2013/05/integer-sequence-review-a051200/

Primes gotta stick together | The Aperiodical
http://aperiodical.com/2013/05/primes-gotta-stick-together/

(Parece ser que) Demostrada la conjetura débil de Goldbach - Gaussianos | Gaussianos
http://gaussianos.com/parece-ser-que-demostrada-la-conjetura-debil-de-goldbach/

All odd integers greater than 7 are the sum of three odd primes! | The Aperiodical
http://aperiodical.com/2013/05/all-odd-integers-greater-than-7-are-the-sum-of-three-odd-primes/

soft question - Why do we study prime ideals? - Mathematics Stack Exchange
http://math.stackexchange.com/questions/389837/why-do-we-study-prime-ideals

First proof that infinitely many prime numbers come in pairs : Nature News & Comment
http://www.nature.com/news/first-proof-that-infinitely-many-prime-numbers-come-in-pairs-1.12989

The Paradox of the Proof | Project Wordsworth
http://projectwordsworth.com/the-paradox-of-the-proof/
On August 31, 2012, Japanese mathematician Shinichi Mochizuki posted four papers on the Internet.
The titles were inscrutable. The volume was daunting: 512 pages in total. The claim was audacious: he said he had proved the ABC Conjecture, a famed, beguilingly simple number theory problem that had stumped mathematicians for decades.

A Most Perplexing Mystery | Gödel's Lost Letter and P=NP
http://rjlipton.wordpress.com/2013/05/06/a-most-perplexing-mystery/
"[We] recommend to all cryptographic users to stop using medium prime fields."

Number theory - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Number_theory

Abel Prize to Pierre Deligne | Not Even Wrong
http://www.math.columbia.edu/~woit/wordpress/?p=5674

Pierre Deligne wins the 2013 Abel Prize | Gowers's Weblog
http://gowers.wordpress.com/2013/03/20/pierre-deligne-wins-the-2013-abel-prize/

The Aperiodical | The Abel Prize Laureate 2013: Pierre Deligne
http://aperiodical.com/2013/03/abel-prize-2013-pierre-deligne/

The work of Pierre Deligne
http://www.abelprize.no/c57681/binfil/download.php?tid=57753
by W.T.Gowers

The Aperiodical | ABC, as easy as pp1-40
http://aperiodical.com/2013/03/abc-as-easy-as-pp1-40/

A Panoramic Overview of Inter-universal Teichm¨uller Theory
http://www.kurims.kyoto-u.ac.jp/~motizuki/Panoramic%20Overview%20of%20Inter-universal%20Teichmuller%20Theory.pdf

On Fermat's Last Theorem for n = 3 AND n = 4
http://wstein.org/edu/2010/414/projects/ohana.pdf

Fermat's Last Theorem: Fermat's Last Theorem: Proof for n=3
http://fermatslasttheorem.blogspot.com.ar/2005/05/fermats-last-theorem-proof-for-n3.html

(Vídeo) Explicando con música la aritmética modular - Gaussianos
http://gaussianos.com/video-explicando-con-musica-la-aritmetica-modular

La sorprendente criba de la parábola - Gaussianos
http://gaussianos.com/la-sorprendente-criba-de-la-parabola/

Lagrange's four-square theorem - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Lagrange%27s_four-square_theorem

Jacobi's four-square theorem - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Jacobi%27s_four-square_theorem

15 and 290 theorems - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/15_and_290_theorems
The 15 theorem of John H. Conway and W. A. Schneeberger (Conway–Schneeberger Fifteen Theorem), proved in 1993, states that if an integral quadratic form with integer matrix represents all positive integers up to 15, then it represents all positive integers.

Brun sieve - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Brun_sieve

Natural density - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Natural_density

Schnirelmann density - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Schnirelmann_density

FINE ASYMPTOTIC DENSITIES FOR SETS OF NATURAL NUMBERS
http://www.dm.unipi.it/~dinasso/papers/24.pdf

The asymptotic density of sequences
http://www.ams.org/journals/bull/1951-57-06/S0002-9904-1951-09543-9/S0002-9904-1951-09543-9.pdf
Our purpose is to outline the recent work on the asymptotic or limit density of sets of positive integers...
The related concept of Schnirelmann density is touched upon...

Mis Enlaces
http://delicious.com/ajlopez/numbertheory

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez