Angel "Java" Lopez en Blog

Publicado el 19 de Mayo, 2013, 7:30

Anterior Post 
Siguiente Post

Más enlaces y novedades. Incluso hay nuevos resultados sobre una conjetura de Goldbach, y la distribución de los números primos de a pares. Hace unos meses, estuve leyendo sobre densidad, un tema muy interesante donde se junta combinatoria y teoría de números.

abc: the story so far | The Aperiodical

Primes really do stick together | The Aperiodical
"The author has succeeded to prove a landmark theorem in the distribution of prime numbers. … We are very happy to strongly recommend acceptance of the paper for publication in the Annals."

Posible avance en el estudio de los primos gemelos - Gaussianos | Gaussianos

Integer sequence review: A051200 | The Aperiodical

Primes gotta stick together | The Aperiodical

(Parece ser que) Demostrada la conjetura débil de Goldbach - Gaussianos | Gaussianos

All odd integers greater than 7 are the sum of three odd primes! | The Aperiodical

soft question - Why do we study prime ideals? - Mathematics Stack Exchange

First proof that infinitely many prime numbers come in pairs : Nature News & Comment

The Paradox of the Proof | Project Wordsworth
On August 31, 2012, Japanese mathematician Shinichi Mochizuki posted four papers on the Internet.
The titles were inscrutable. The volume was daunting: 512 pages in total. The claim was audacious: he said he had proved the ABC Conjecture, a famed, beguilingly simple number theory problem that had stumped mathematicians for decades.

A Most Perplexing Mystery | Gödel's Lost Letter and P=NP
"[We] recommend to all cryptographic users to stop using medium prime fields."

Number theory - Wikipedia, the free encyclopedia

Abel Prize to Pierre Deligne | Not Even Wrong

Pierre Deligne wins the 2013 Abel Prize | Gowers's Weblog

The Aperiodical | The Abel Prize Laureate 2013: Pierre Deligne

The work of Pierre Deligne
by W.T.Gowers

The Aperiodical | ABC, as easy as pp1-40

A Panoramic Overview of Inter-universal Teichm¨uller Theory

On Fermat's Last Theorem for n = 3 AND n = 4

Fermat's Last Theorem: Fermat's Last Theorem: Proof for n=3

(Vídeo) Explicando con música la aritmética modular - Gaussianos

La sorprendente criba de la parábola - Gaussianos

Lagrange's four-square theorem - Wikipedia, the free encyclopedia

Jacobi's four-square theorem - Wikipedia, the free encyclopedia

15 and 290 theorems - Wikipedia, the free encyclopedia
The 15 theorem of John H. Conway and W. A. Schneeberger (Conway–Schneeberger Fifteen Theorem), proved in 1993, states that if an integral quadratic form with integer matrix represents all positive integers up to 15, then it represents all positive integers.

Brun sieve - Wikipedia, the free encyclopedia

Natural density - Wikipedia, the free encyclopedia

Schnirelmann density - Wikipedia, the free encyclopedia


The asymptotic density of sequences
Our purpose is to outline the recent work on the asymptotic or limit density of sets of positive integers...
The related concept of Schnirelmann density is touched upon...

Mis Enlaces

Nos leemos!

Angel "Java" Lopez