Publicado el 18 de Febrero, 2014, 8:50
Uno de los primeros textos donde apareción "variedad" en mis lecturas de este siglo, está en "el Penrose". El tema de variedades suaves aparecen en varios lugares en ese gran libro. Vaya una nota para recordar la introducción al tema: Nota 2 Leo en la sección 10.2 Suavidad, Derivadas Parciales:
Justamente, en las variedades suaves se aplica alguna forma de análisis matemático, involucrado integrales, derivades, diferenciales. Esa es una nota que distingue a las variedades suaves: no son "suaves" sólo en un sentido topológico sino que hay una estructura adicional que permite extender el cálculo ("cálculo" como "análisis matemático", no simple destreza de calcular), a las variedades de varias dimensiones (incluso de dimensión infinita). Igual, a Penrose le interesa las variedades n-dimensionales. Y explica un caso de uso en física.
Al pensar en dos dimensiones, uno podría usar el plano euclídeo. Pero hay otros ejemplos, más interesantes:
Voy a dejar acá la lectura del texto para esta nota. Por una lado, aparecieron coordenadas. Por otro lado, a cada punto del espacio/variedad a considerar se le puede asignar una función (por ejemplo, con resultado real o complejo; si queremos jugar a las matemáticas, podríamos considerar funciones que van de una variedad a otra, y considerar la variedad "target"/objetivo a la recta real o plano complejo como casos especiales). Les adelanto que hay que considerar: - La existencia de mapas de coordenadas que pueden no cubrir TODA la variedad (por ejemplo, no hay una forma de adoptar coordenadas en la superficie de una esfera PARA TODOS los puntos, sin caer en puntos singulares, como el "polo norte" y el "polo sur" en el caso de coordenadas longitud/latitud) Nos leemos! Angel "Java" Lopez |