Angel "Java" Lopez en Blog

Publicado el 28 de Junio, 2014, 19:04

Anterior Post
Siguiente Post

El hecho de que la fuerza que aparece entre dos cargas sea proporcional a la PRIMERA potencia de cada carga es llamada linearidad. Algo que está relacionado con esto, pero más general, se ha visto en los experimentos: si dos cargas, colocadas en puntos distintos, ejercen fuerza sobre una tercera, esta fuerza es la suma vectorial de las fuerzas de cada carga inicial sobre la tercera. Esto es notable, y no es evidente que tuviera que ser así (lo mismo pasa con la gravedad). Primero, la fuerza es aditiva, en el sentido de si tenemos DOS cargas EN EL MISMO lugar, ejercen una suma de fuerzas sobre una tercera. Pero lo que acabamos de ver que muestran los experimentos, es que si las DOS cargas están EN DOS LUGARES distintos, la fuerza que ejercen contra la tercera sigue una REGLA SIMPLE, de suma vectorial. Esto es lo que se llama el Principio de Superposición de la fuerza eléctrica. Si extendemos esto a la fuerza debida a VARIAS cargas, el principio de superposición nos lleva a:

Esta fórmula expresa la fuerza en una carga puntual q en la posición r debido a otras cargas qn localizadas en los puntos rn. Acá podemos apreciar por qué es más conveniente el uso de un numerador elevado al cubo, en lugar de la fórmula inicial que habíamos visto, donde el numerador estaba elevado al cuadrado:

donde en el numerador aparecía no r sino un versor (de longitud unitaria) en la dirección de r:

Bien, tenemos definida la fuerza sobre una carga puntual q. Se ha visto que es muy útil trabajar, en lugar de con la fuerza, con el llamado campo eléctrico. Definamos al campo E como:

[1]

Para la fuerza ejercida sobre la carga puntual q por el resto de las cargas. Pero sacando "afuera" a q en la expresión que conocemos:

Queda el campo eléctrico como función de la posición:

[2]

Al principio parece todo esto un truco matemático. Pero veremos que el concepto de campo eléctrico E tiene importancia física por sí mismo, no solamente como una forma distinta de conseguir la fuerza F. Vemos que en la ecuación [2] desapareció q. Parece como que no importa si estuviera o no. Vaya la aclaración siguiente.

En la ecuación [1] definimos el campo eléctrico E en el punto r en la presencia de la carga q. Pero tenemos que tener cuidado si la vamos a usar como campo eléctrico ANTES de haber introducido la carga q. Esto se debe que el campo puede quedar transformado si introducimos la carga q. Por ejemplo, al introducir la carga q podemos cambiar la posición de otras cargas en el entorno. Por eso tenemos que usar, para definir el campo eléctrico en un punto r AUN antes de introducir una carga q, al límite:

Donde entonces E0 es el campo eléctrico del que podemos hablar ANTES de introducir a q en la posición r.

Hasta ahora hemos considerado cargas puntuales, y n cargas. Veremos en el próximo post cómo generalizar este resultado a una cantidad "casi infinita" de cargas.

Principal fuente consultada: Classical Electromagnetism, de Jerrold Franklin.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia