Angel "Java" Lopez en Blog

Publicado el 12 de Julio, 2014, 14:12

Anterior Post
Siguiente Post

Veamos hoy una condición adicional que tiene que cumplir la ecuación que buscamos. Ya tenemos las relaciones de Einstein/de Broglie, que ponen sobre la mesa las relaciones entre:

 Energía y Frecuencia
 Momento y Longitud de Onda

Esto es lo extraño y nuevo que se encontró a principios del siglo XX: la relación entre conceptos físicos, como energía y momento, con conceptos de onda. Esa relación no la hubiera esperado nadie. Ahora estamos buscando una ecuación que nos permita determinar una función de onda, una expresión matemática que nos de un valor a cada punto r y cada instante t.

Pues bien, cualquier cosa que hallemos, deberá ser compatible con la física clásica, al menos en el límite. Una de las cosas que esperaríamos es que sea compatible con:

Esta relación clásica expone la relación entre energía total E, energía cinética y energía potencial, en un sistema de una partícula de masa m, momento p, y energía potencial V. Si estamos en el caso de una partícula libre dentro de un potencial V que no se altera con el tiempo, la relación de arriba debe dar una energía E constante. En esta relación aparece tanto la energía potencial V, como la energía cinética dependiente del momento p, y la energía total. De alguna forma, tenemos que relacionar esos conceptos, energía y momento, con frecuencia y longitud de onda. Lo vamos a lograr, pero lo que consigamos deberá ser compatible con la relación de arriba, en el caso de potencial V constante en el tiempo y sólo dependiente de la posición de la partícula. No sabemos cómo una función de onda:

Va a aparecer involucrada en esta relación, pero ya vamos a llegar al tema. Alguna pista ya nos dan las relaciones de Einstein/de Broglie, que nos permiten relacionar energía y momento, con frecuencia (en el tiempo) y longitud de onda (en el espacio).

Otra condición que nos gustaría satisfacer, es la linealidad de las soluciones. Es decir, si:

es una solución a la ecuación de ondas que buscamos, y:


es otra solución a la misma ecuación de ondas, entonces requerimos que:

sea también una solución potable a la misma ecuación, con coeficientes alfa y beta cualesquiera. Esta exigencia viene motivada para explicar cualquier fenómeno de interferencias de ondas en los experimentos. La linealidad nos va a permitir combinar de distintas formas soluciones encontradas, simplemente sumándolas, y dando a cada solución inicial, un coeficiente de peso (alfa y beta en la fórmula de arriba).

Ya tenemos dispuesto el escenario y las relaciones que queremos satisfacer. ¿Podremos obtener una ecuación cuya solución nos dé la función de onda buscada? Armados con estas dos nuevas exigencias, y lo que exploramos en los anteriores posts, ya estamos en condiciones de buscar la ecuación soñada.

Nos leemos!


Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia