Angel "Java" Lopez en Blog

Publicado el 24 de Agosto, 2014, 16:43

Anterior Post
Siguiente Post

Veamos hoy un ejemplo simple y clásico del uso de un lagrangiano. En física, se ha visto que dado un sistema se puede encontrar una función, el lagrangiano:

Como la función que describe el sistema. En el caso de arriba, depende de coordenadas xi, de sus derivadas en el tiempo, y del tiempo mismo. Vamos a ver que las propiedades del lagrangiano no cambian aún cambiando las coordenadas, lo que lo hace más útil que la formulación newtoniana. ¿Pero qué son "las propiedades del lagrangiano"? ¿y cómo es que "describe el sistema"?

Pues bien, la gran propiedad de un lagrangiano que merezca ese nombre, es que genera n ecuaciones diferenciales:

Y que con estas ecuaciones queda descripta la evolución del sistema.

Para ver entonces un caso concreto, tomemos el sistema compuesto de una sola partícula, en libertad, una partícula libre, sin ser expuesta a fuerzas exteriores, digamos con energía potencial que no cambia en el tiempo ni en el espacio. Entonces esa energía potencial podemos tomarla como 0. ¿Cuál es el lagrangiano que describe ese sistema? Para un mismo sistema, hay una indeterminación del lagrangiano, no es que hay un lagrangiano único (algo similar estamos viendo en cuanto a la función de onda de mecánica cuántica: puede haber más de una función que describa EL MISMO estado físico). Pero podemos arriesgarnos y postular (sacar de la galera, digamos) a que el lagrangiano es:

Acá, la x con punto es un vector velocidad, y el cuadrado es el productor vectorial. En coordenadas espaciales, sería

Haciendo pasar a este lagrangiano por el proceso de generar las ecuaciones diferenciales de arriba, queda para tres coordenadas xi:

Que nos dice que ese producto de masa por velocidad de cada coordenada es una constante del movimiento. Es el momento, al que se refiere la segunda ley de Newton. Lo que nos dicen las ecuaciones derivadas del lagrangiano, en este caso, es que el momento o cantidad de movimiento se conserva en cada coordenada, aun transcurriendo el tiempo. Nuestra partícula no cambia de velocidad ni en intensidad ni en dirección.

En próximos post tendremos que investigar:

 ¿Podemos derivar el lagrangiano que vimos de consideraciones físicas generales?
 ¿Qué son esas ecuaciones diferenciales que se derivan del lagrangiano? ¿tienen algún significado?
 ¿Siguen valiendo esas ecuaciones aún cuando cambiemos las coordenadas?

Mientras, enlaces relacionados:

Deriving the Lagrangian for a free particle
Lagrangian

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia