# Angel "Java" Lopez en Blog

### Publicado el 13 de Octubre, 2014, 14:47

 Sigo leyendo a "An Elementary Primer for Gauge Theory" de K.Moriyasu: One essential requisite for the study of gauge theory is at least a nodding acquaintance with some of the terminology of group theory. The heart of any gauge theory is the gauge symmetry group and the crucial role that it plays in determining the dynamics of the theory. Fortunately, much of the necessary group theory is already familiar to physics students from the treatment of angular momentum operators in quantum mechanics. The essential difference in gauge theory is that the symmetry group is not associated with any physical coordinate transformation in space-time. Gauge theory is based on an "internal" symmetry. Therefore, one cannot speak of angular momentum operators, but must replace them with the more abstract concept of group generators. This is more than a mere change of labels because the generators have mathematical properties which were previously ignored in quantum mechanics but are very useful in gauge theory. In particular, we will see that the proper understanding of gauge invariance leads naturally to a geometrical description of gauge theory that is both highly intuitive and strongly resembles the familiar geometrical picture of general relativity. By exploiting this geometrical feature of gauge theory, we can often find much simpler interpretations of complicated physical phenomena such as gauge symmetry breaking, which is one of the most important ingredients of the Weinberg-Salam theory. Es importante destacar la gran diferencia que implica la aparición de simetrías "internas". Es algo que no siempre se pone de manifiesto en los artículos de divulgación: la aparición de "otras dimensiones" donde se juega las simetrías involucradas. Notablemente, reaparecen de otra forma la combinación de transformaciones PERO NO CONMUTATIVAS, como bien menciona al referirse a la similitud con el momento angular. La aparición de teorías gauges no conmutativas es relativamente reciente, podemos remontarnos a Yang-Mills y cía. Y sí, la imagen geométrica ayuda a captar los conceptos que aparecen. Pero no hay nada como una clara formulación matemática. Nos leemos! Angel "Java" Lopezhttp://www.ajlopez.comhttp://twitter.com/ajlopez
Por ajlopez, en: Ciencia