Angel "Java" Lopez en Blog

Publicado el 18 de Octubre, 2014, 17:05

Anterior Post
Siguiente Post

Esta vez, vuelvo a leer "el Penrose" que ya había citado. Siguiendo el capítulo 20, leo:

... [investiguemos] la imagen lagrangiana... Coordenadas para el T(C) de Lagrange servirían para determinar las posiciones de todos los cuerpos newtonianos (incluidos los ángulos apropiados para especificar las orientaciones espaciales de los cuerpos rígidos, etc.) y también sus velocidades (incluidas las correspondientes velocidades angulares de los cuerpos rígidos, etc.). Las coordenadas de posición q1, ... qn normalmente denominadas "coordenadas generalizadas", etiquetan los diferentes puntos q del espacio de configuración C (quizás dadas solo "al modo de atlas"...) Cualquier sistema de coordenadas (adecuado) servirá. No hace falta que sean "cartesianas" ni de ningún otro tipo estándar. Esta es la belleza del enfoque lagrangiano (y también del hamiltoniano). La elección de coordenadas está gobernada simplemente por la conveniencia... En correspondencia con el conjunto escogido de coordenadas generalizadas están las "velocidades generalizadas" ...

Es bueno recordar la facilidad que nos da el planteamiento lagrangiano para acomodarnos a las coordenadas generalizadas que queramos. Ya mostraré en mi serie de posts matemáticos sobre lagrangianos y hamiltonianos un ejemplo concreto. Pero lo que hay que destacar ahora es que: cambiando las coordenadas, la expresión de la lagrangiana cambia, sus valores no, Y AL APLICARLE EL PROCEDIMIENTO de las ecuaciones de Euler, SE OBTIENEN ECUACIONES DE MOVIMIENTO equivalentes, es decir, no perdemos descripción física. Aún cambiando de coordenadas, la lagrangiana sigue describiendo el mismo sistema. Esto es así (de nuevo, lo veremos más en concreto en mi serie de posts más matemáticos) porque las ecuaciones de Euler expresan una condición GEOMETRICA, que no se pierde al cambiar las coordenadas, si la nueva lagrangiana tiene los mismos valores para Q1,...., Qn y sus velocidades, que los que tenía la vieja para el correspondiente q1,...qn y sus velocidades. Es similar a tener una función que nos dé la distancia entre dos puntos en el plano, y la transformemos a otras coordenadas (variables independientes), pero conservando sus valores, es decir, que nos dé el mismo valor para la distancia entre dos puntos cualesquiera, expresados en las nuevas coordenadas. Que f(x,y) nos dé lo mismo que g(X,Y), siendo f la vieja función con viejas coordenadas, y g la nueva función con nuevas coordenadas. En el caso de la lagrangiana es algo más complicado, porque lo que importa es que se conserve su valor, pero no es el valor de la lagrangiana lo que usamos DIRECTAMENTE, sino que "la trituramos" con las ecuaciones de Euler, y voilá, obtenemos ecuaciones del movimiento, en nuevas coordenadas, pero que describen el MISMO sistema físico.

Lo de "atlas" se refiere a variedades (manifolds) que pueden cubrirse por varios atlas de coordenadas, cada uno ocupa una región de la variedad.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia