Publicado el 7 de Diciembre, 2014, 5:55
Mencionaba en el anterior posts el tema de la aparición de números complejos: la función de onda de Schrödinger es inevitablemente una función que arroja valores de números complejos, no es una función real. El propio Schrödinger quiso en algún momento tomar solamente la parte real como significativa físicamente, pero no era el camino correcto. Solamente cuando ese valor complejo se toma como amplitud de probabilidad, es que se puede avanzar (ver Matemáticas y Física Cuántica (2) Probabilidad). Era habitual en física-matemática, operar con complejos por conveniencia, pero tomar la parte real como algo físicamente distinto de la parte imaginaria. Hasta el famoso artículo de Heisenberg de 1925 toma en unos párrafos ese camino. Pero en la formulación de Schrödinger hay que abrazar a los números complejos, no se los puede separar en parte real y parte imaginaria. Son esenciales para la explicación cuántica, e iremos viendo que su presencia le da un "sabor" particular a todo el tema (ver Dirac y las amplitudes de probabilidad en física cuántica). Hoy vamos a descansar del trabajo matemático. Quiero compartir un texto que no conocía, una nota a un artículo de Schrödinger. No pude encontrar la referencia original, la encontré estos días en el excelente libro de José Navarro Faus "Heisenberg, el principio de incertidumbre", de RBA, editado acá por el diario La Nación, en una serie que aparece cada sábado. En una nota de la página 81, leo:
Pero el artículo A LEER para ver todo el panorama, es el artículo "Square root of minus one, complex phases and Erwin Schrödinger", de Chen Ning Yang, en "Schrödinger, Centenary Celebration of a Polymath". Sí, es el mismo Yang de las teorías Yang-Mills, y el del premio Nobel por su trabajo con Lee en la no conservación de la paridad. Yang hace un recorrido muy lúcido y completo sobre el tema, destacando que tanto la ecuación de Schrödinger como la formulación de Heisenberg, contienen al número i. Escribe "It is to be emphasized that the very meaning of these equations would be totally destroyed if one tries to get rid of i by writing [them] in terms of real and imaginary parts. Yang cita más en extenso, el comentario de Dirac que mencioné en un enlace de más arriba:
(no quiero dejar notar que lo de "physical significance is obscure" puede que esté relacionado con el efecto Aharanov-Bohm, tal vez el primer lugar donde la fase compleja parece tener significado físico experimental). Escribe el propio Yang más adelante:
With matrix mechanics [Heisenberg] and wave mechanics [Schrödinger], however, the situation dramatically changes. Complex numbers became a conceptual element of the very foundation of physics... Veamos su comentario sobre la actitud de Schrödinger:
Lo que explica que también que a Schrödinger se le escapara contemplar a la función completa como amplitud de probabilidad, como haría más adelante Max Born (me apresuro a recordar que ya en 1925 Max Born y Jordan habían tomado los coeficientes complejos que aparecían en las matrices de Heisenberg como lo que hoy llamamos amplitudes de probabilidad, creo que habían aparecido en los artículos de Krammer sobre dispersión, pero tengo que revisar).
En un ejemplo en una nota al pie de unos de sus artículos, Schrödinger pone una función compleja, poniendo que esa expresión "the real part is to be taken, as usual". Escribe Yang:
El 27 de Mayo de 1926, H.A.Lorentz, de 73 años de edad, le escribe una larga carta a Schrödinger, agradeciéndole que le haya enviado las pruebas de tres artículos, y le plantea varias cuestiones. Para Yang, dos de esas cuestiones son relevantes para el tema de hoy: a) cómo intepretar la función psi para dos o más partículas, b) Lorentz opinaba que las verdaderas ecuaciones de movimiento no deberían contener E de ninguna forma, solamente derivadas temporales. Schrödinger le contesta el 6 de Junio. Es interesante notar que a) nos lleva a que haya más coordenadas, y que psi no es una función sobre "el espacio real". Si tenemos dos electrones, las coordenadas se duplican. En la respuesta, Schrödinger le comenta que ha abandonado la expresión psi (derivada parcial de psi por tiempo), y ha empezado a usar, para su último artículo, psi por la conjugada compleja de psi, "for the electric charge density in real space". Y escribe: "What is unpleasant here, and indeed directly to objected to, is the use of complex numbers. psi is surely fundamentally a real function". Es decir, el bueno de Erwin todavía no se había tragado la píldora de lo esencial de los números complejos. Con respecto a b), es interesante notar que Schrödinger le contesta con una ecuación, donde E al cuadrado es reemplazada por H al cuadrado. Y ese cuadrado le permite no poner el número i en la expresión. De hecho, la ecuación de Schrödinger como la hemos expuesto hasta acá, no aparece en ninguno de sus primeros cinco "papers". La respuesta que le da a Lorentz indica que aún en Junio de 1926, estaba luchando por eliminar de alguna forma la parte imaginaria. Poco después de haberse enviado el sexto artículo de Schrödinger, Max Born publica dos artículos. Usa una función real senoidal. Escribe Yang:
Algo notable que descubro en el artículo de Yang, es que el propio Schrödinger ya en 1922 había publicado un "paper" titulado "On a remarkable property of the quantum orbit of one electron", en el que mencionaba la posibilidad de introducir un factor imaginario (menos i por h sobre 2 pi) en la teoría gauge de Weyl de 1918 (tendría que revisar si ya en 1922 conocía personalmente a Weyl. En el desarrollo de 1925/1926, Weyl ayudó personalmente a Schrödinger, reuniéndose todos los martes al finalziar la tarde para conversar sobre el avance de su desarrollo; Weyl fue amante de la esposa de Schrödinger, en un asunto más de la curiosa vida sentimental de Erwin, que tenía digamos un "matrimonio abierto"). Ver Notas sobre Teorías Gauge (5). Escribe Yang:
Schrödinger was by then evidently well on his way to the first great paper on wave mechanics which he submitted on January 27, 1926. No tengo el artículo de Raman y Forman. Pero hay que leer el "A few reasons why Louis de Broglie discovered matter waves and yet did not discover Schrödinger"s equation" de Olivier Darrigol, incluido en el libro "Erwin Schrödinger - 50 Years After". Vayamos terminando. Lo importante a entender, es que Yang apunta a que la aparición de una fase compleja nos llevó a una teoría gauge, donde el electromagnetismo puede ser introducido en la mecánica cuántica con un operador sobre psi, donde aparece i. Esto nos llevaría más allá del tema de esta serie, pero es bueno tenerlo en cuanta. Todo llevó al artículo de Weyl de 1929 donde se discute el electromagnetismo como una teoría gauge, y donde Weyl hace uso de la fase compleja QUE YA Schrödinger había sugerido en 1922. Es interesante repasar en otro momento la última parte del artículo de Yang, donde muestra la posible influencia histórica de distintos "papers", como el de Bose sobre Einstein, y algunos de London y Fock. Seguramente será alimento para mi serie de notas sobre teorías gauge. Nos leemos! Angel "Java" Lopez |