Angel "Java" Lopez en Blog

Publicado el 29 de Diciembre, 2014, 7:40

Anterior Post
Siguiente Post

Tomemos otro caso concreto, sencillo. De nuevo, el caso es el de una partícula, pero esta vez, en vez de estar totalmente libre, está viajando por un potencial que depende sólo de la posición (no del tiempo ni de la velocidad). Guiados por los primeros posts, donde el lagrangiano fue igualado a energía cinética MENOS energía potencial (no siempre es así), ponemos:

Donde el x con punto es un vector velocidad (y ese primer término de la derecha es la energía cinética de la partícula), y el x sin punto es un vector posición. La U(x) es la energía potencial, que esperamos sólo depende de la posición de la partícula, y no varía con el tiempo (es decir, sus valores para cada punto del espacio se mantienen constantes; si hay cambio, es porque hay cambio en x, no en t)

Expresado en coordenadas cartesianas, queda el lagrangiano:

Aplicando las ecuaciones de Euler-Lagrange:

Quedan TRES ecuaciones de movimiento, UNA POR COORDENADA. Por ejemplo, para x1:

¿Qué significa? Supongamos que con el tiempo, la velocidad x punto aumenta (el primer término de la izquierda aumenta). Para que se mantenga la suma cero, el segundo término tiene que disminuir. Y para eso, se deberá haber desplazado la partícula a un lugar donde la nueva U sea menor que la original. Es decir, a mayor cantidad de movimiento, pasamos a estar en un punto que tiene menor potencial. Y viceversa. Lo que ganamos en energía cinética, lo perdemos en energía potencial. De nuevo, resultados que concuerdan con la mecánica newtoniana clásica.

Vemos que en el análisis de arriba, la velocidad se considera como una variable más, "independiente" de la variable posición. Es algo raro de ver, pero funciona.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez


Por ajlopez, en: Ciencia