Angel "Java" Lopez en Blog

Publicado el 17 de Febrero, 2015, 17:53

Siguiente Post

Es tiempo de iniciar esta serie de post, visitando el último teorema de Fermat, su historia matemática, los caminos que se exploraron para su solución, hasta llegar a su demostración final. Este teorema fue planteado por Pierre de Fermat, al leer un problema de Diofanto en su Aritmetica, traducida por Bachet de Meziriac. El problema de Diofanto era:

Divide un cuadrado dado en otros dos cuadrados

Diofanto daba una solución ilustrativa, no general. En realidad, pedía números racionales, no necesariamente enteros. Para la solución general, ver el post Ternas Pitagóricas. Citando el artículo de D"Alembert en la Enciclopedia de 1750:

El método de Diofanto consistía en reducir la situación a una ecuación en una incógnita mediante una serie de transformaciones

Fermat anotó en esa copia del libro de Diofanto:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet

Traducido como

Descomponer un cubo en otros dos cubos, una cuarta potencia, y en general una potencia arbitraria en dos potencias del mismo grado arriba del segundo, es una cosa imposible y ciertamente he encontrado una prueba admirable. Este estrecho margen no puede contenerla

Esta es la afirmación que se convirtió en el Ultimo Teorema de Fermat. Sólo sabemos de él gracias a esta nota en el margen del libro, publicada por una reedición del hijo mayor de Fermat, Clement Samuel, publicada en 1670, luego de la muerte de Fermat. No parece encontrarse en ninguna de sus numerosas cartas con colegas, ni tampoco se encontró traza, pista de la supuesta "prueba admirable" de la que habla. Lo que sí se ha encontrado el desafío para n=3 y n=4, enviado a Mersenne, Pascal y John Wallis. Tal vez tenía una prueba para n=4, basada en el descenso infinito. Hoy, dado el nivel de nuevas matemáticas que insumió la prueba final de Wiles a fines del siglo pasado, casi podemos estar seguros que esa "prueba admirable" estaba equivocada. Varios intentos a lo largo de siglos, han puesto de manifiesto que es improbable que Fermat tuviera una prueba real, y lo más plausible es que se hubiera dejado llevar por su entusiasmo, aportando una prueba con fallas.

En lenguaje moderno, podemos poner, que para n > 2, la ecuación:

Cumpliendo con

No tiene solución

Principal fuente consultada. El excelente libro: "Invitation to the Mathematics of Fermat-Wiles", de Yves Hellegouarch.

Ver también http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez