Angel "Java" Lopez en Blog

Publicado el 24 de Febrero, 2015, 13:04

En el post de ayer escribí sobre las series de Fourier, mencionando que ese desarrollo había influido en muchos temas, incluso en el desarrollo de la teoría de conjuntos de Cantor. En estos días, me encuentro leyendo el excelente libro "Godel, los teoremas de la incompletitud", de Gustavo Ernesto Piñeiro (apareció en la serie de libros española, distribuida acá en Argentina por el diario La Nación, cada sábado). Y leo, la página 25, sobre "El infinito de Cantor" una breve historia:

Cuando un matemático investiga, su objetivo es siempre la resolución de un problema específico. Incluso hoy en día, si se le pregunta a un matemático en qué tema está trabajando, su respuesta seguramente consistirá en el enunciado del problema que está intentando resolver. Para entender el problema que estudiaba Cantor en 1870 [en la universidad alemana de Halle] debemos hablar brevemente de las series de Fourier.

A principios del siglo XIX el matemático francés Joseph Fourier desarrolló un método que le permitía descomponer cualquier onda periódica en una sumatoria de ondas elementales específicas (todas las cuales resultan de modificar la amplitud, la frecuencia o la fase de una onda inicial única). Fourier utilizó este método con gran éxito para estudiar fenómenos ondulatorios como la propagación del calor o la vibración de una cuerda. Como estas sumatorias normalmente involucran una cantidad infinita (en potencia) de ondas, y en matemáticas a una sumatoria infinita se le suele llamar una "serie", a este método se le dio el nombre de "series de Fourier". Actualmente sigue siendo una herramienta esencial en muchas ramas de las matemáticas, así como de la física y de la ingeniería.

Y acá viene la relación con el infinito de Cantor:

En la década de 1860, también en Halle, el matemático alemán Eduard Hene trabajaba en el problema de determinar si la descomposición de una onda periódica en una sumatoria de ondas elementales es siempre única

La pregunta sobre la unicidad de una cierta descomposición es muy común en matemáticas ....

Recordemos el tema de la factorización única del anillo de enteros en factores primos (QUE NO SE DA en todos los anillos)

... Heine se preguntaba si existiría un vínculo similar entre una onda periódica y sus ondas elementales. ¿Sería única esa descomposición, así como es única la descomposición en primos? En la década de 1860, Heine logró demostrar que para ciertos tipos de ondas periódicas (por ejemplo, para aquellas que no tienen "saltos" o discontinuidades), la descomposición en ondas elementales es realmente única. Sin embargo, no había encontrado una demostración general que abarcara todas las situaciones posibles. Entre otras cosas, no había podido demostrar la unicidad en el caso d que en cada período la onda tuviera una cantidad infinita (en potencia) de salto. De modo que cuando Cantor llegó a Halle en 1870, Heine le propuso que trabajar en esta pregunta: ¿es siepre única la descomposición de una onda periódica, aun cuando la cantidad de saltos e cada período pudiera crecer indefinidamente?

Y eso es lo que hizo que Cantor creara la teoría de conjuntos.

Cantor se abocó a estudiar el problema y en 1871 obtuvo una primera respuesta: la descomposición de una onda periódica es única, aun cuando la cantidad de saltos o discontinuidades crezca ilimitadamente, siempre y cuando esos saltos estén distribuidos de una determinada manera. Es decir, para que se garantizara la unicidad, la forma en que los saltos iban apareciendo debía cumplir ciertas condiciones específicas. Pero encontró algunas dificultades a la hora de expresar esos requisitos de una manera concreta, exacta y elegante. Seguramente tenía una intuición muy precisa de cuáles eran las particularidades que quería enunciar, pero se le espcaba el modo de transmitirla en palabras claras y precisas.

Para poder expresar esas condiciones de forma adecuada, Cantor creó los fundamentos de la teoría de conjuntos, separando los infinitos en distintas clases, que había infinitos "más grandes" que otros, y donde se cumplía (como ya había señalado Galileo) que el todo no es mayor que las partes.

Y todo esto, a partir de un problema de las series de Fourier :-)

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez