Angel "Java" Lopez en Blog

Publicado el 26 de Febrero, 2015, 11:12

Hay unos libros excelentes de la editoral española RBA, que acá en Argentina aparecen de vez en cuando publicados en series semanales. Actualmente, el diario La Nación está publicando una serie de biografías, cada sábado, y son verdaderamente aprovechables. Ya aparecieron varios, como Einstein, Newton, Schrödinger, Heisenberg, Planck, Euclides, Pitágoras, Laplace, Copérnico, Feynman, Kepler, Turing, Arquímedes, y más, bien escritos, con detalles matemáticos y científicos, y también con datos del desarrollo histórico y personal del biografado. No es común eso: en general, aparecen biografías para "legos" donde no se tratan los términos técnicos, o biografías técnicas, sin adentrarse en la persona y el grupo que los generó.

Este último sábado apareció la biografía "Godel, los teoremas de la incompletitud", de Gustavo Ernesto Piñeiro (que ya mencioné en otro post). Leo ahí una conocida anécdota de Bertrand Russell, que expongo en mis palabras.

En una conferencia para público general, Russell expuso que si un sistema de axiomas es inconsistente (puede demostrar una afirmación y su contraria) entonces cualquier afirmación es demostrable a partir de ellos (al parecer, en la conferencia Russell se apoyó en la versión semántica de este tema, en vez de usar inconsistencia, afirmó que partiendo de una premisa falsa puede demostrarse cualquier cosa). Inmediatamente Russell fue desafiado por la audiencia a demostrar que si 1=0 entonces Smith (uno de los asistentes del público) era el papa. Russell razonó así: si 1=0, sumemos uno a ambos lados, quedando 2=1. Sean el conjunto de dos elementos Smith y el papa, pero como 2=1, los dos elementos son uno, y Smith es el papa :-)

Desconozco si la anécdota es real o no, no pude confirmarla. La explicación de Russell es para zafar de la pregunta, y se apoya en conceptos semánticos de conjunto, elemento, etc. Piñeiro expone claramente la diferencia entre lo semántico y lo sintáctico, y que consistencia es un en tema sintáctico, casi mecánico, que se apoya en el concepto de cadena de demostración manipulando símbolos con reglas del sistema en cuestipon. Subraya también que la demostración de Godel de su primer teorema fue cuidadosamente urdida para apoyarse en una autoreferencia sintáctica, en lugar de una autoreferencia´semántica, como la que había señalado el propio Russell en 1902 sobre la teoría de conjuntos de Frege.

Tengo entonces pendiente de explicar en un próximo post la afirmación de Russell, pero desde el punto de vista sintáctico, de cómo desde una manipulación de símbolos, y considerando P y no-P como demostrables desde un conjunto de axiomas, y en un sistema donde se admiten las cualidades de la implicación, entonces se puede probar cualquier afirmación Q.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.,com/ajlopez