Angel "Java" Lopez en Blog

Publicado el 22 de Abril, 2015, 5:11

Anterior Post
Siguiente Post

En el primer post mencioné un tema a explorar: las matemáticas ¿existen por sí mismas, en una realidad matemática digamos, y nosotros como seres humanos las vamos descubriendo, como cuando exploramos un continente desconocido (no inventamos las montañas, simplemente las descubrimos; lo mismo los teoremas y conceptos)? En este caso ¿cómo es posible que podamos acceder desde nuestra mente a ese mundo? ¿O serán las matemáticas sólo fruto de la mente humana, sin mayor entidad fuera de ella? Entonces ¿cómo se explica la gran aplicación y éxito de las matemáticas en los modelos de la realidad física?

Veamos la postura expresada por Alain Connes, que defiende la primera posición: las matemáticas como realidad independiente de la realidad física (y de nuestra mente). Connes es matemático, ganador de la medalla Field (1982) (EL PREMIO en matemáticas, que se otorga cada cuatro años), y el premio Crafoord (2001). En 1989 expuso su punto de vista de esta manera:

Tomemos, por ejemplo, los números primos [aquellos que sólo son divisibles por sí mismos y por la unidad] que, por lo que a mí respecta, constituyen una realidad más estable que la realidad material que nos rodea. El matemático de profesión se puede comparar con un explorador que se pone en marcha para descubrir el mundo. A partir de la experiencia se pueden descubrir hechos básicos. Por ejemplo, basta con unos sencillos cálculos para darse cuenta de que la serie de números primos parece no tener fin. El trabajo del matemático es entonces demostrar que, efectivamente, hay una infinidad de números primos. Este es un resultado antiguo, como sabemos, y se lo debemos a Euclides. Una de las consecuencias más interesantes de esta demostración es que, si alguien afirma un día que ha descubierto el mayor número primo que existe, será fácil demostrar que se equivoca. Esto mismo es válido para cualquier demostración. Nos enfrentamos pues a una realidad estrictamente igual de incontestable que la realidad física.

En próximo post, veremos que no todos están de acuerdo con la postura de Connes. Incluso hay matemáticos que defienden la idea de las matemáticas como fruto humano.

El texto de arriba lo encuentro en las primeras páginas del libro de Mario Livio, "¿Es Dios un matemático?"

Ver también:

http://www.alainconnes.org/en/

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez