Angel "Java" Lopez en Blog

Publicado el 24 de Mayo, 2015, 19:19

Anterior Post
Siguiente Post

En las expresiones clásicas del post anterior, apareció varias veces la frecuencia:

En realidad, son varias, una por cada estado estacionario n. La idea es que en los tiempos de Heisenberg se sabía que había "estados estacionarios" de los electrones en el átomo, desde el modelo de Bohr. Estados donde el electrón no radia energía. Era un postulado extraño, porque en la teoría clásica, cualquier carga eléctrica en movimiento debía radiar algo de energía en forma de radiación. Pero desde el modelo de Bohr, se vió que era útil suponer que hay estados así, que no emiten radiación. En ese caso, el electrón correspondiente no pierde energía por moverse en su "órbita".

La frecuencia omega(n) mencionada arriba correspondería a la frecuencia fundamental de ese electrón que tendría que radiar ese electrón. También cabría esperar que pueda radiar en múltiplos de esa frecuencia:

Donde alfa es un número entero. El análisis de Heisenberg trata a un electrón moviéndose en una sola dimensión. Por eso estuvimos hablando de calcular para cada n, la evolución de la coordenada de ese electrón en el tiempo. Suponiendo ese movimiento periódico con frecuencia omega(n), su expansión general en serie de Fourier es:

Recordemos: esta es la expresión más general del movimiento periódico en una dimensión. Desde Fourier, con algunas condiciones mínimas, se sabe que existe esta expansión, y luego, con los trabajos de Heine y notablemente Cantor (ver Series de Fourier, Heine y Cantor), se sabe que la expansión es única.

Supongamos que n está fija o determinada de antemano. Heisenberg se preguntó entonces: si x(t) (para un n dado) se puede representar con la fórmula de arriba, ¿cuál es la expresión para su cuadrado? Es decir para

Esta pregunta se la hace porque es común en física usar las potencias de las magnitudes físicas, y si quiere construir un símil cuántico a lo clásico, analiza primero cuál es la expansión clásica de esta expresión, para luego ver de buscar la expresión cuántica de su nueva teoría. Como x(t) = x(n, t) para n fijo, es una serie infinita, su cuadrado es la multiplicación de esas dos series. Y resulta una serie, de Fourier de nuevo, donde cada término tiene un factor que multiplica a la frecuencia, digamos beta:

Cada término de esta nueva expresión es la suma de todas las multiplicaciones de los factores originales, que de a pares producen un beta como resultado. Es decir:

Es decir, la frecuencia fundamental es la misma, omega(n). Los coeficientes beta recorren todos los enteros, igual que antes los alfa. Lo que cambian son los factores a beta, que podemos ver como el "peso" de cada término. Tenemos entonces:

Este sería el camino clásico: x(t) en un estado estacionario n es INDEPENDIENTE de todos los demás estados. Vamos a ver en los próximos post, que en el modelo cuántico no es tan simple: x(t) y sus potencias dependerán también de otros estados. ¿Por qué se da esto? Porque desde el modelo de Bohr se vió que LAS FRECUENCIAS emitidas/absorbidas NO SON DEPENDIENTES de un estado, de su frecuencia fundamental SINO que son la diferencia de frecuencias entre DOS estados. En el modelo cuántico hay un entrelazado de estados, y siempre un estado puede pasar a otro, con cierta probabilidad. Curiosamente, este concepto de probabilidad aplicado a lo que puede pasar en un estado físico fue introducido por Einstein, en un artículo de 1917, fundamental para entender desarrollos como el maser y el laser; pero a Einstein nunca le gustó que esa probabilidad fuera esencial, no explicable por algún otro estado interno.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia