Angel "Java" Lopez en Blog

Publicado el 21 de Febrero, 2016, 18:48

Anterior Post
Siguiente Post

Tratemos otro caso donde aparecen números complejos en los intentos de demostración del último teorema de Fermat.

Podemos escribir para n = 3:

Donde

Es una raíz tercera de la unidad, compleja. Lo mismo tenemos en general:

Las raíces se llaman números ciclotómicos. Y cuando se agregan a los reales, forman un nuevo sistema de números. Ver Cyclotomic Field.

Es notable cómo un resultado sobre la suma de dos potencias de números reales se puede expresar como una serie de factores complejos a multiplicar. No es algo evidente, y nos habla de una fuerte conexión entre los mundos real y complejo para este famoso teorema de Fermat. Vamos a ir viendo conexiones aún más inesperadas en la historia de su demostración completa. Realmente, van asomando maravillas a cada momento.

Como este desarrollo en factores es igual a zn, y éste es una potencia n, se puede explorar el caso: todos los factores del desarrollo son potencias n, y sacar conclusiones sobre su existencia. Por ejemplo, podría probarse que algún factor al querer desarrollarse como potencia n exacta de algún número

sea imposible su existencia, para el caso n = 3 y otros casos. Sin embargo, esto se apoya en la presunción de que en ese anillo de reales extendido por estas raíces de la unidad SE CUMPLE LA FACTORIZACION UNICA. Y eso se vió que no siempre es cierto. La prueba general ofrecida por Lamé en el siglo XIX falla por ese motivo. El error fue señalado en su tiempo por Liouville.

Sin embargo, aún esa falla fue fructífera, porque dio pie a que Kummer creara los números ideales, los números "faltantes" para restaurar la factorización única en esos anillos. Kummer creó el concepto de primos regulares y demostró el teorema de Fermat para esos casos. Espero poder discutir su trabajo en esta serie de posts, más adelante.

Ver también Root of unity

Por ahora, seguiremos en los próximos post con el caso n = 3

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez