Angel "Java" Lopez en Blog

Publicado el 14 de Marzo, 2016, 5:44

Anterior Post

Ya había anticipado el tema de esta serie de post, en La fórmula multiplicativa de la indicatriz. En el primer post, mencioné a la función indicatriz de Euler, vieja conocida de este blog, ver también La función indicatriz de Euler, Calculando la función indicatriz de Euler, Una propiedad de la indicatriz de Euler.

Veamos hoy de seguir con el tema de funciones multiplicativas, pero usando como ejemplo a la función indicatriz. Hay una propiedad interesante que pueden tener. Si dos números n, m son primos entre sí:

Es decir, tienen máximo común divisor igual a uno. Entonces si se cumple para la función aritmética f:

Entonces se dice que es función multiplicativa. Sólo se exige esta propiedad cuando los números m, n son primos entre sí.

La función indicatriz es multiplicativa, y algo de la demostración estaba en los posts mencionados. Veamos de de mostrarla de nuevo, de otra manera.

Sabemos que cuando p es primo, entonces:

¿Cuál es el valor de la indicatriz para una potencia de p? Sea que queremos calcular:

En este casos, los que NO son primos con palfa son:

Que si los contamos, son 1 de cada p números:

Restando del total de números, los que son no primos con palfa, nos queda la cantidad de los que SI SON PRIMOS:

Esto nos sirve como preliminar para encarar la demostración de la propiedad multiplicativa.

Veamos otra propiedad más general que nos va a ayudar. Si sabemos que dos números son primos entre sí:

Entonces también se cumple:

Y en general, para cualquier k:

En particular, tomemos a m = np, como un múltiplo de un primo p:

Entonces:

Es decir, si tomamos los números de 1 a m = np:

Algunos serán primos con m y otros no. Pero si ponemos los números de 1 a 2m:

El patrón de números primos se repite. Para fijar ideas, sea m = 3*2. Los números:

Tienen algunos que son primos con 6 (marcados con un asterisco). Si los repetimos hasta llegar a doce:

El patrón de asteriscos ES EL MISMO, el 1 y el 5, se "repiten" en el 7 y el 11. Se "repiten" los primos con 6, pero no aparecen nuevos. Y no aparecen nuevos, pues si:

Entonces

Y como p divide a m, también se tiene:

Y se sigue

Es decir, que en este caso, cuando a un número a con asterisco se le suma m, dando a+m, sigue con asterisco, y si no tiene, tampoco lo tiene el nuevo a+m.

Es interesante ver cómo el máximo común divisor se "mantiene" en 1 o en mayor que 1, por más que se cambie m por mp, o mpp, o mppp, o por más que se sume km cualquiera. Todo esto siempre que m sea divisible por p.

En el próximo post veremos qué pasa si m no es divisible por p, cuál es la fórmula para la cantidad de números primos con mp.

En próximos post seguimos con propiedades de las funciones aritméticas, como ¿habrá otras funciones multiplicativas? ¿será la función de Moebius multiplicativa? ¿qué otras propiedades tiene la función indicatriz? Veremos que hay también funciones COMPLETAMENTE multiplicativas, y funciones aditivas. Ver

Arithmetic function

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez