Angel "Java" Lopez en Blog

Publicado el 25 de Marzo, 2016, 7:57

Anterior Post
Siguiente Post

Siempre hasta ahora hemos manejado magnitudes físicas de espectro discreto: sus valores posibles forman un conjunto numerable (finito o infinito). La existencia de ese tipo de magnitudes es uno de los grandes descubrimientos de la teoría cuántica. Ya se vislumbraba en el siglo XIX que los espectros de emisión de muchos átomos y moléculas simples seguían un patrón discreto, contrariamente a lo que uno espera de una fuente de luz. Estamos acostumbrados a la luz del sol, que en el arco iris se distribuye de forma continua.

Pues en el ambiente cuántico hay magnitudes que no toman valores continuos, sino discretos. Uno de los primeros ejemplos ha sido el modelo atómico de Bohr, donde las órbitas de los electrones sólo podían tomar algunos valores específicos. Cuando se desarrolló la primera mecánica cuántica, uno de los logros tanto del modelo de Heisenberg como del de Schrödinger fue explicar esa distribución discreta, aunque sea en los átomos más simples, como el de hidrógeno. En ese átomo, la energía de un electrón ligado sólo puede tomar algunos valores (es interesante recordar que Schrödinger llegó a su teoría, tomando el camino de explicar esos valores como autovalores de una función).

Pero cuando consideramos la energía de un electrón no ligado a un núcleo atómico, sus valores pueden ser continuos. Así tenemos un ejemplo de magnitud física que tiene ambos espectros, continuo y discreto.

Cuando una magnitud puede tomar valores discretos, pudimos expresar una función de estado como combinación lineal de autofunciones:

Pasando al espectro discreto, y haciendo "magia" matemática, sólo justificada por su aplicación física, podemos expresar una función de estado, como una integral que recorre:

Pongo explícitamente q como las coordenadas que puede tomar la función de estado, para destacar que esta función recorre y depende de esas coordenadas. Los

Mas que coeficientes, son funciones del parámetro f, que toma valores continuos (antes usábamos valores naturales). Y las "autofunciones" ahora son:

Una función base por CADA valor de f. Por analogía, podemos seguir haciendo "magia" matemática (sin justificación firme) y tomar los coeficientes como:

Tenemos que explorar el significado físico de estas expresiones, y aparecerán relaciones con desarrollos de Fourier, y más analogías con nuestro trabajo anterior en valores discretos. Ya no podemos tomar los coeficientes af como probabilidad, sino que tendremos que hablar de probabilidad de tal valor entre f y f+df. Pero eso lo veremos en los próximos posts.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia