Angel "Java" Lopez en Blog

Publicado el 28 de Junio, 2016, 0:25

Anterior Post
Siguiente Post

En el post anterior había quedado pendiente terminar con el capítulo 3:

Chapter 3: Prime Elements and Unique Factorization Domains (Continuación)

El gran tema que sigue es la discusión de los DFU (Dominios de Factorización Unica) en el contexto de los dominio de integridad cualesquiera. Digo que es un gran tema, porque no es evidente que existan dominios que NO sean de factorización única. Y además tiene su importancia en la historia de las matemáticas: la demostración fallida del teorema de Fermat de Kummer (en el siglo XIX) era notable, pero se fundaba en que el anillo generado por las raíces complejas p-ésimas de la unidad era un DFU, que sólo se cumple hasta p < 19. Este capítulo también menciona brevemente esto. Recordemos, un DFU D es un dominio de integridad D (esto es, sin divisores de cero, anillo conmutativo, con unidad, y 1 <> 0), cuando para cualquier elemento d, se cumple: d es 0, d es unidad, o d tiene una factorización única en primos. Y recordemos que p es primo si cada vez que p divide al producto ab, entonces se cumple p divide a a, o p divide a b (esto es algo que cambia un poco el concepto de primo que tenemos de los números naturales; aca no se habla de sus divisores, sino de lo que en los enteros sería el lema de Euclides; los elementos sin divisores asociados se llaman irreducibles).

Sea un dominio de integridad R. Mencionan cuatro propiedades:

A: por cada elemento a no unidad hay factores irreducibles q1, q2, ... qr tales que a = q1q2..qr

A': por cada elemento a no unidad hay factores primos p1, p2, ... p3 tales que a = p1p2..pr

B: toda serie de irreducibles q1,q2,..., qr y serie q'1, q'2,.... q'r tales que sean iguales sus multiplicaciones q1q2...qr = q'1q'2...q'r tienen cantidad iguales de elementos y sólo difieren en su orden

C: todo irreducible es primo

Entonces demuestran que R es DFU si y sólo si:

1) R satisface A y B
2) R satisface A y C
3) R satisface A'

Para mí, es un resultado notable, no trivial, que pone de manifiesto las relaciones entre irreducibles y primos.

Se cumple también que si R es un DFU, entonces hay infinitos primos.

Todo R que sea un dominio de ideales principales (es decir, todo ideal de R es generado por un solo elemento), entonces R es un DFU. Para probar esto, también prueban que si en R, cada cadena ascendente, por inclusión, de ideales de R es estacionaria (es decir, si a partir de un elemento de la cadena, todos los siguientes son iguales), entonces R es un DFU.

Consideran el anillo de los polinomios F[x] sobre un campo F, y demuestran que también es un DFU. Para esto, muestran que en F[x] existe un algoritmo de división. Llegados a este punto, se menciona la norma en un anillo, como forma de implementar un algoritmo de división. Los anillos con norma se llaman anillos euclideanos (curiosamente, mencionan también como anillos noetherianos a los que cumplen con la condición de toda cadena ascendente de ideales es estacionaria; debe ser equivalente a otra condición de los anillos noetherianos: que todo ideal sea generado por una cantidad finita de elementos). Armados del algoritmo de división para dominios con norma, demuestran que esos dominios son dominios de ideales principales (ideales generados por un solo elemento) y entonces son DFUs.

Es un hermoso camino, no trivial pero tampoco con grandes dificultades. Entonces se deriva que los a+ib con a, b enteros (los enteros de Gauss, con i la raíz imaginaria) tienen norma, y entonces, forman un DFU. No todo primo en Z es primo en Z[i]. Los primos en Z[i] se llaman primos gaussianos. Los primos en Z se llaman primos racionales. Incluso los enteros de Z se llaman enteros racionales para no confundirlos con enteros de otros dominios.

Por ejemplo, el primo racional 29 NO ES primo gaussiano: 29 = (5+2i)(5-2i). Si nos fijamos bien en esto, se ve que todo primo racional que es suma de dos cuadrados enteros NO ES primo gaussiano. Ya Fermat demostró que esos primos son TODOS los de la forma 4m+1. Que curioso, vean cómo todo se va conectando en matemáticas, de Fermat a Gauss y de vuelta...

Ha sido un largo capítulo, pero con resultados muy interesantes.

Ver también:

Gaussian integer
Table of Gaussian integer factorizations

Ver también

Unique factorization domains

Donde se muestra una interesante relación de inclusión, ejemplo, todo dominio euclídeo es dominio de ideales principales, y todo dominio de ideales principales es DFU. Curiosamente hay DFUs QUE NO SON dominios de ideales principales y entonces, tampoco son dominios con norma. El caso más destacable es R[x] con R DFU, que no es dominio de ideales principales en general, a no ser que R sea un campo. Este artículo también muestra resultados modernos sobre condiciones suficientes para ser un DFU.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez