Angel "Java" Lopez en Blog

Publicado el 23 de Julio, 2016, 15:01

Anterior Post
Siguiente Post

Luego de la revolución que produjo las ideas de Heisenberg, apuntaladas por los resultados de Born, Jordan y Dirac, todavía habría más sorpresas. La aparición de la formulación de Schrondinger trajo otro formulismo matemático para explicar los fenómenos cuánticos:

...While we were still discussing the point, there occurred the second dramatic surprise: the appearance of Schrodinger's celebrated paper. He followed quite a different line of thought, which derived from Prince Louis de Broglie (1892-1987). The latter had a few years previously made the bold assertion, supported by brilliant theoretical considerations, that wave-corpuscle dualism, familiar to physicists in the case of light, must also be exhibited by electrons; to each freely movable electron there belongs, according to these ideas, a plane wave of perfectly definite wave length, determined by Planck's constant and mass... Schrodinger extended de Broglie's wave equation, which applied to free motion, to the case in which forces act... and he succeeded in deriving the stationary states of the hydrogen atom as monochromatic solutions of his wave equation not extending to infinity. For a short while, at the beginning of 1926, it looked as if suddenly there were two self-contained but entirely distinct systems of explanation in the field - matrix mechanics and wave mechanics. But Schrodinger himself soon demonstrated their complete equivalence.

Es interesante ver que Schrödinger sigue otro camino, para explicar los fenómenos conocidos, basados en las ideas de de Broglie, usando analogías entre la óptica geométrica y la ondulatoria, para conseguir algo que conciliara la mecánica clásica y la nueva mecánica. Sus métodos resultaron más familiares a muchos físicos, pero al final, se vió que ambas aproximaciones (la de Heisenberg y la de Schrödinger) eran similares.

Wave mechanics enjoyed much greater popularity than the Gottingen or Cambridge version of quantum mechanics. Wave mechanics operates with a wave function ip, which - at least in the case of one particle - can be pictured in space, and it employs the mathematical methods of partial differential equations familiar to every physicist.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia