Angel "Java" Lopez en Blog

Publicado el 14 de Mayo, 2017, 15:34

Anterior Post

El tema de las curvas elípticas es tan fascinante como amplio. Es a veces difícil saber por dónde empezar, que leer al principio, que investigar. Uno de los libros que me ayudaron a empezar a entender de qué va el tema y sus aplicaciones es:

Elementary Number Theory: Primes, Congruences, and Secrets

de William Stein. Hay versión para bajarse en http://wstein.org/ent/, actualizado a enero de 2017. Podemos estudiar desde los elementos de la teoría de números, llegando a curvas elípticas en el último capítulo. Además se puede estudiar reciprocidad cuadrática, fracciones continuas, y toda la base elemental de teoría de números. El capítulo 3 es interesante porque explica el uso en criptografía de varios resultados de la teoría de números.

(Recordemos acá a Hardy, el "descubridor" de Ramanujan, cultivador de la teoría de números de la que orgulloso decía que no tenía aplicación práctica; se asombraría hoy de cuánto se usa en criptografía).

Al principio, Stein escribe:

The systematic study of number theory was initiated around 300B.C. when Euclid proved that there are in nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A.D.) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Duffie and Hellman introduced the first ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, public key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles' resolution of Fermat's Last Theorem.

Al principio del capítulo sobre curvas elípticas, escribe:

Elliptic curves are number theoretic objects that are central to both pure and applied number theory. Deep problems in number theory such as the congruent number problem: which integers are the area of a right triangle with rational side lengths? translate naturally into questions about elliptic curves. Other questions, such as the famous Birch and Swinnerton-Dyer conjecture, describe mysterious structure that mathematicians expect elliptic curves to have. One can also associate nite abelian groups to elliptic curves, and in many cases these groups are well suited to the construction of cryptosystems. In particular, elliptic curves are widely believed to provide good security with smaller key sizes, something that is useful in many applications, for example, if we are going to print an encryption key on a postage stamp, it is helpful if the key is short! Morover, there is a way to use elliptic curves to factor integers, which plays a crucial role in sophisticated attacks on the RSA public-key cryptosystem

Ver la conjetura:

https://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture

Es notable que el problema de saber si un número es congruente o no, carece de solución general:

https://en.wikipedia.org/wiki/Congruent_number

Para sus ejemplos usa http://www.sagemath.org/ Stein primero define cómo es una curva elíptica dando ejemplo gráfico sobre los reales (no trata las curvas elípticas sobre complejos). Define las curvas elípticas en su forma corta, dependiendo de dos parámetros a, b, sin puntos singulares, y evitando los campos K de característica 2 y 3. Para incluir estos campos, define la forma más general de curvas elípticas, con cinco coeficientes.

La primera propiedad no trivial es la estructura de grupo de los puntos de una curva elíptica. Y cómo ese grupo se conserva entre los puntos de coordenada racional. Stein señala que el punto difícil para demostrar la existencia de grupo es probar la asociativada de la "suma de puntos" que define. Menciona tres métodos para demostrarla: apelando a la descripción geométrica, calculándola a partir de las fórmulas para calcular el tercer punto, o sino, desarrollar una teoría general de "divisores de curvas algebraicas" por la cual la asociatividad del grupo sale como un corolario natural.

Otro tema que presenta es el uso de curvas elípticas en la factorización de enteros. Enuncia un resultado de Lenstra, el Elliptic Curve Method, inspirado en un método de Pollard (p-1). De ambos da ejemplos. Del método de Lenstra da, más que una demostración rigurosa, una explicación heurística. 

El tema siguiente es la aplicación de curvas elípticas en criptografía, tema introducido independientemente por Neil Koblitz y Victor Miller a mediados de los ochenta del siglo pasado. Primero discute el análogo de Diffie-Holman, en vez de sobre Z/Zp sobre la curva E(Z/Zp). Luego discute el sistema criptográfico ElGamal. Presenta el problema del logaritmo discreto en curvas elípticas.

El tema final es curvas elípticas sobre números racionales, con el importante resultado de Mordell: el grupo de puntos racionales de una curva elíptica tiene base finita, enunciado sin demostración. Menciona el método "de descenso" para calcular esa base, aclarando que no está demostrado que siempre termine exitosamente. Enuncia también un resultado de Mazur, 1976, sobre el grupo de torsión de E(Q), dándolo isomorfo a uno de 15 grupos. El grupo cociente E(Q)/E(Q)tor es un grupo abeliano finitamente generado, entonces es isomorfo a una potencia de Z. Esa número potencia es el rango de E(Q). Hay una conjetura, parte del folclore matemático no asociado a ningún autor en particular, que dice que hay curvas elípticas de cualquier rango arbitrario. Presenta el record mundial de una curva con rango 28. Y notablemente, presenta la relación entre curvas elípticas y números congruentes (números naturales que son la superficie de un triángulo rectángulo de lados racionales).

En fin, un libro para comenzar a tomarle el gusto a esto de las curvas elípticas. No discute el caso complejo, ni da todas las demostraciones, pero sirve para introducirse en este mundo interminable,

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez