Angel "Java" Lopez en Blog

9 de Julio, 2018


Publicado el 9 de Julio, 2018, 12:02

En estos días, estoy estudiando algunos temas de matemáticas. Uno de esos temas es teoría de números, un campo inmenso, y con una rica historia. Desde su desarrollo algebraico, hasta la teoría analítica, es notable su avance. Leyendo "From Fermat to Minkowski, Lectures on the Theory of Numbers and Its Historical Development", de Winfried Scharlau y Hans Opolka, me encuentro con un capítulo dedicado a un matemático que no esperaba encontrar en esta historia: Fourier.

Jean Baptiste Joseph Fourier (1768-1830) no fue un teórico de números. Es mas, él mismo no se describiría como matemático sino como físico. Su principal área de trabajo fue las matemáticas del calor. Hace unas semanas, leía una biografía de Fourier: su vida se destaca por haber vivido la revolución francesa y luego, servido a Napoleón. No siendo noble, tal vez si hubiera nacido en otra época, no hubiera podido desarrollar todas sus ideas. Escribió un libro, "Theorie analytique de la chaleur", publicado por primera vez en 1822, donde expone sus desarrollos de ecuaciones diferenciales parciales para explicar la dinámica observada del calor.

Me interesa comentar hoy un párrafo de ese libro, al inicio:

Las causas primeras nos son desconocidas: pero están sujetas a leyes simples y constantes, que pueden ser descubiertas por observación, el estudio de las cuales es el objeto de la filosofía natural... los más diversos fenómenos están sujetos a un pequeño número de leyes fundamentales que son reproducidas en todos los actos de la naturleza. Se reconoce que los mismos principios regulan todos los movimientos de las estrellas, su forma, las desigualdades de sus cursos, el equilibro y la oscilación de los mares, las vibraciones harmónicas del aire y de los cuerpos sonoros, la transmisión de la luz, acciones capilares, la ondulación de los fluidos, en fin los más complejos efectos  de todas las fuerzas naturales, han confirmado el pensamiento de Newton: quod tam paucis tam multa praestet geometría gloriatur.

Interesante declaración de Fourier sobre la ciencia y las matemáticas. Fue Newton el que comenzó a unificar los fenómenos naturales, explicando con los mismos fundamentos los movimientos terrestres y los celestiales. Como bien menciona Fourier, no conocemos las causas primeras: el origen de la gravedad o el por qué de la existencia de la luz, se nos escapan. Pero desde el tiempo de Fourier, hemos llegado a comprender las causas del calor, y tenemos una explicación de su conducta basada en la teoría atómica. No siempre las leyes son fundamentales, sino que la mayoría son derivadas, y gran parte de la ciencia es descubrir la base, el sistema subyacente a lo observado, y no solamente plantear leyes.

Post relacionados:

Series de Fourier

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia