Angel "Java" Lopez en Blog

Publicado el 2 de Agosto, 2018, 21:01

Sigo leyendo libros de Ian Stewart, esta vez, "Significant Figures, The Lives and Work of Great Mathematicians". Me llama la atención su comparación de las matemáticas con otras ciencias en su historia:

ALL BRANCHES OF SCIENCE can trace their origins far back into the mists of history, but in most subjects the history is qualified by ‘we now know this was wrong’ or ‘this was along the right lines, but today’s view is different’. For example, the Greek philosopher Aristotle thought that a trotting horse can never be entirely off the ground, which Eadweard Muybridge disproved in 1878 using a line of cameras linked to tripwires. Aristotle’s theories of motion were completely overturned by Galileo Galilei and Isaac Newton, and his theories of the mind bear no useful relation to modern neuroscience and psychology.

Mathematics is different. It endures. When the ancient Babylonians worked out how to solve quadratic equations – probably around 2000 BC, although the earliest tangible evidence dates from 1500 BC – their result never became obsolete. It was correct, and they knew why. It’s still correct today. We express the result symbolically, but the reasoning is identical. There’s an unbroken line of mathematical thought that goes all the way back from tomorrow to Babylon. When Archimedes worked out the volume of a sphere, he didn’t use algebraic symbols, and he didn’t think of a specific number π as we now do. He expressed the result geometrically, in terms of proportions, as was Greek practice then. Nevertheless, his answer is instantly recognisable as being equivalent to today’s  πr3.

Hay ciencias cuyos primeros resultados perduran desde la antiguedad, como la estática desde Arquímedes. Pero otras han ido formando modelos explicativos de la realidad, que luego se cambian por otros, como ahora tenemos las ideas de Einstein que reemplazaron a las de Newton. Pero las matemáticas formas modelos que al no tener que corresponder con una realidad, pueden ser formulados y extendidos sin desecharlos. La geometría de Euclides sigue siendo tan verdadera en su base hace 2000 años como ahora, aun cuando sabemos que no es la geometría a aplicar al mundo físico. Tiene ese encanto la matemática: es el "gran juego" que vamos armando a lo largo de los siglos. Habrá que ver cuanto de esta "creación humana" es creación propia o es descubrimiento de un mundo matemático que existe más allá de nuestra experiencia.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez