Angel "Java" Lopez en Blog

Abril del 2019


Publicado el 30 de Abril, 2019, 16:09

Anterior Post
Siguiente Post

La nariz que parece una mano y hace la tarea de los ojos
https://zoologik.naukas.com/2019/03/05/la-nariz-que-parece-una-mano-y-hace-la-tarea-de-los-ojos/

Aparici en órbita: El 150 aniversario del descubrimiento de la tabla periódica
https://www.ondacero.es/programas/mas-de-uno/audios-podcast/aparici-orbita/150-aniversario-descubrimiento-tabla-periodica_201903065c7fa2a80cf28ce7478a7f21.html

Neuroscience Readies for a Showdown Over Consciousness Ideas
https://www.quantamagazine.org/neuroscience-readies-for-a-showdown-over-consciousness-ideas-20190306

With a Simple Twist, a "Magic" Material Is Now the Big Thing in Physics
https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/

Possible Balancing Selection in Human Female Homosexuality
https://link.springer.com/article/10.1007%2Fs12110-017-9309-8

Algunas recomendaciones matemáticas para el Día Internacional del Libro 2013
https://www.gaussianos.com/algunas-recomendaciones-matematicas-para-el-dia-internacional-del-libro-2013/

Missing Galaxies? Now There"s Too Many
https://www.quantamagazine.org/the-problem-of-the-missing-satellite-galaxies-gives-way-now-theres-too-many-20190109/

Dark Matter in Galaxies: evidences and challenges
https://arxiv.org/abs/1807.08541

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia

Publicado el 29 de Abril, 2019, 12:49

Anterior Post
Siguiente Post

Tychonoff Space
https://en.wikipedia.org/wiki/Tychonoff_space

Tychonoffication
https://golem.ph.utexas.edu/category/2019/02/tychonoffication.html

Weak Goldbach conjecture
https://twitter.com/_julesh_/status/1084833583972388865

Google employee calculates pi to record 31 trillion digits
https://www.theverge.com/2019/3/14/18265358/pi-calculation-record-31-trillion-google

Where Proof, Evidence and Imagination Intersect
https://www.quantamagazine.org/where-proof-evidence-and-imagination-intersect-in-math-20190314/

Without a Proof, Mathematicians Wonder How Much Evidence Is Enough
https://www.quantamagazine.org/without-a-proof-mathematicians-wonder-how-much-evidence-is-enough-20181031/

Algunas curiosidades sobre los números de Fibonacci
https://www.gaussianos.com/algunas-curiosidades-sobre-los-numeros-de-fibonacci/

A heuristic for boundedness of ranks of elliptic curves
https://arxiv.org/abs/1602.01431

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
https://twitter.com/ajlopez

Publicado el 28 de Abril, 2019, 17:51

Anterior Post
Siguiente Post

The Math That Tells Cells What They Are
https://www.quantamagazine.org/the-math-that-tells-cells-what-they-are-20190313

Lenses and Learners
https://arxiv.org/abs/1903.03671

Ramanujan, el hombre que vio en sueños el número pi
https://www.bbvaopenmind.com/ciencia/grandes-personajes/ramanujan-el-hombre-que-vio-en-suenos-el-numero-pi/

An Interactive Introduction to Fourier Transforms
http://www.jezzamon.com/fourier/index.html

Regular 65537-gon
https://twitter.com/johncarlosbaez/status/1091815883662598144
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002496585

Five Reasons to Love the Pythagorean Theorem
https://blogs.scientificamerican.com/roots-of-unity/five-reasons-to-love-the-pythagorean-theorem/

Every odd integer is the difference of 2 squares
https://twitter.com/fermatslibrary/status/1114867167437176832

Higher-dimensional Cubes
https://twitter.com/johncarlosbaez/status/1098663374412427264

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
https://twitter.com/ajlopez

Publicado el 26 de Abril, 2019, 12:42

Anterior Post

Este fue el primer artículo que Einstein escribió para el diario La Prensa, en su visita a Argentina en 1925:

Pan-Europa, por Alberto Einstein
(especial para La Prensa)

Europa forma, no obstante sus disenciones políticas, desde la antigüedad, una unidad espiritual. El americano, sobre todo, a quien Europa se muestra en sus manifestaciones intelectuales y económicas, comprende que nuestro continente, a pesar de todos los individualismos y egoísmos nacionales, lleva una vida común e internacional, de modo que las complicaciones bélicas han de parecerle como algo insensato, como un suicidio. La historia del espíritu europeo muestra que las diferentes naciones del continente se han fecundado siempre mutuamente. Las grandes fuerzas espirituales que en los diferentes siglos influyen, en diversas formas, en la vida de la ciencia y del arte, no se preocupan de las fronteras políticas. La multiplicidad de las manifestaciones nacionales y de sus caracteres individuales culmina en cada época con la idea europea que se renueva constantemente.

Es por eso natural que desde hace siglos aquellos espíritus dirigentes de Europa que se percataron de la unión que existe entre la vida cultural de su país respectivo y la de los demás países del continente se hayan dado también cuenta de la insensatez de situaciones que amenazaron y destruyeron los más altos valores de esa parte del mundo y que fueron creados por un atavismo difícilmente comprensible para un no europeo. Que las grandes guerras europeas hayan sido causadas por egoísmos dinásticos o económicos, en todo caso tales guerras no afectaron la esencia de las naciones ni su valor, su misión espiritual verdadera, ni su peculiar individualidad dentro de la comunidad europea. Aunque independientes de una política pacifista especial, son por eso pacifistas casi todas las grandes personalidades de la historia intelectual de Europa; lo son por su naturaleza, por la lógica íntima de su labor; lo son porque tienen un concepto claro del espíritu
europeo y del deber que les incumben. Mas muchos de ellos no se contentaron con este pacifismo natural, sino que pasaron a la política práctica. Deseo recorder al abad francés de Saint Pierre, que hacia 1715 propuso que los estados europeos se unieran en una Liga de paz eterna. Kant, por su parte, formuló en el Segundo artículo de su obra sobre "La paz eterna", la siguiente proposición: "El derecho internacional debe tener por base el federalismo de los Estados Libres".

Considerada en su vida espiritual, Europa ofrece un cuadro muy distinto del que vemos cuando la contemplamos en la política de fuerza y de intereses de los diferentes estados. Precisamente en aquellos países en que la ambición sin responsabilidad de la dinastía o de algunas castas predominantes se desarrolla en la forma más potente, existía en la mayor parte de los casos un pronunciado contraste entre los que ejercían el poder y los hombres dirigentes de la vida científica y artística. Este contraste no se explica sólo por la diversidad de los intereses, sino que emana de aquella delicada raíz psicológica de la cual surgen las personalidades intelectuales que son "buenos europeos" (en el sentido de Goethe y de Nietzsche) y que se dan cuenta de la ridiculez de un patriotismo mezquino que desearía hacer cesar más allá de la frontera del Estado hasta la vida hiperpolítica.

En nuestra época, sobre todo, después de las terribles experiencias de la guerra mundial, la idea de la comunidad europea despertó a nueva vida, y probablemente con mayor intensidad en Alemania y en Francia, las dos naciones europeas que, acaso más que otras - y esto no obstante sus seculares diferencias políticas -, se han fecundado mutuamente en el terreno espiritual. Mas algo nuevo que permite cierto optimismo con respect al porvenir de Europa: es posible que la sicología y la mentalidad del "buen europeo" den origen a una nueva política. La Liga de las Naciones, por fragmentaria que sea hasta ahora por su forma y por la labor que tiene realizada, es la primera tentativa que en la historia de Europa se hace para poner en práctica la idea de la solidaridad europea. Pero la Liga no se ha librado aún de las antiguas relaciones de poder y agrupaciones de potencias de Europa. No podrá conjurar el peligro que una Europa dividida entraña para el mundo mientras no se le hayan incorporado Alemania y Rusia. No ha encontrado aún un método para unir el conjunto europeo por lo que es peculiar, y por eso no pudo colocar a Europa al nivel de los países no europeos. La idea de la Liga de las Naciones tuvo últimamente un complemento fecundo en el movimiento paneuropeo, creado por el conde Coudenbove-Kalergi. Dicho movimiento se inspira en la comunidad de los intereses y en la mentalidad del continente. Mas me parece que el programa y los métodos del joven fundador del movimiento son demasiado constructivos y simplifican con exceso. El fin que anhela el programa, da a menudo, cuando lo formulan políticos idealistas, como resueltos los problemas prácticos y teóricos. Una tarea de tantas dificultades como la de unión de Europa no se deja simplificar en una forma constructiva, sino que hay que aclarar y consolidar cada pormenor complicado.

Así y todo, la idea europea progresa. Ya no la manifiestan sólo pensadores idealistas, sino también hombres políticos, como por ejemplo, se puede ver por diferentes discursos del presidente del consejo francés. Esta idea tiene que dominar el porvenir de Europa, y lo dominará y prepará el camino para la Unión paneuropea, si el continente no quiere excavar su propia tumba.

A vosotros, los americanos, os parecerá extraño que hable siempre de Europa cuando se trata de un asunto que interesa al mundo entero. Más fácil es tender la mano sobre la base del derecho al compañero lejano; es difícil armonizar con el vecino que evoca el recuerdo de innumerables roces y conflictos que tuvieron por causa la vecindad. Acuerdos consolidadores entre los vecinos deben por eso preparar el régimen de la justiciar en el mundo entero.

Hay que agregar otra consideración. Sin la unión de Europa no habrá una Liga de las Naciones realmente universal. Pero la unidad política de Europa se obtendrá forzosamente cuando se hayan adherido a la Liga todas las naciones de América, las que no tropiezan con grandes dificultades para adherirse a la gran comunidad. El porvenir de la historia está, desde este punto de vista, en manos de América.

Era 1925. Luego de la "gran Guerra" se tenia la esperanza de llegar al fin a alguna paz u organización de los países. No había llegado la depression, y todavía no se caía en cuenta que la paz lograda en 1918 iba a ser solo un preludio a otro enfrentamiento "mundial". Siempre Einstein estuvo a favor de la paz, y en contra de la guerra. Y si bien lo de arriba es premonitorio, no deja de ser una esperanza en un tiempo donde las naciones europeas y algunas relacionadas no estaban todavía en camino hacia la paz. Un tema que Einstein no plantea, por ejemplo, es la cantidad de ocupaciones europeas en otros continentes, como Asia, a resolver solo luego de décadas y de otra guerra mundial.

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
https://twitter.com/ajlopez

Por ajlopez, en: Ciencia

Publicado el 13 de Abril, 2019, 10:41

Anterior Post
Siguiente Post

Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves
https://arxiv.org/abs/1902.01866

500-million-year-old worm 'superhighway' discovered in Canada
https://phys.org/news/2019-02-million-year-old-worm-superhighway-canada.html

How We Know about the Oort Cloud, Distant Home of Comets
https://www.space.com/what-is-the-oort-cloud.html

The Physics Still Hiding in the Higgs Boson
https://www.quantamagazine.org/the-physics-still-hiding-in-the-higgs-boson-20190304/

Social Evolution
http://roberttrivers.com/SocialEvolution.pdf

Los «hechos» en mecánica cuántica dependen del observador
https://francis.naukas.com/2019/03/05/los-hechos-en-mecanica-cuantica-dependen-del-observador/

Physicists Aim to Classify All Possible Phases of Matter
https://www.quantamagazine.org/physicists-aim-to-classify-all-possible-phases-of-matter-20180103

The Universe"s Ultimate Complexity Revealed by Simple Quantum Games
https://www.quantamagazine.org/the-universes-ultimate-complexity-revealed-by-simple-quantum-games-20190305

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez

Por ajlopez, en: Ciencia

Publicado el 9 de Abril, 2019, 11:15

Hermoso tiempo de primavera en Buenos Aires, días y noches agradables, con el clima del paraiso. Reviso mis resoluciones del mes de marzo:

- Escribir sobre Historia de las Matemáticas [pendiente]
- Escribir sobre Matemáticas [pendiente]
- Escribir sobre Historia de la Ciencia [completo] ver post
- Estudiar blues en guitarra [completo]

Tengo que escribir sobre matemáticas, incluso puede que me atreva a escribir en inglés, en un nuevo blog dedicado al tema.

Mis resoluciones para este nuevo mes de abril:

- Escribir sobre Matemáticas
- Escribir sobre Física
- Escribir sobre Historia de las Matemáticas
- Escribir sobre Historia de la Ciencia
- Estudiar blues en guitarra

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
https://twitter.com/ajlopez

Publicado el 7 de Abril, 2019, 18:28

Anterior Post
Siguiente Post

En marzo y abril de 1925, Einstein visita la Argentina. En ese tiempo dio doce conferencias, y además colaboró con el diario argentine La Prensa. Su tercer artículo fue publicado luego de su partida hacia Uruguay y Brasil, el 3 de mayo. Es un artículo para mí muy interesante, porque refleja muy bien la posición de Einstein respecto de la actividad de un físico y el progreso de la ciencia. Lo transcribe:


La física y la esencia de las cosas
por Alberto Einstein (especial para La Prensa)

Si a un físico teórico, que ha elegido su ramo por una necesidad interior, se le dirige esta pregunta: ¿cuál es el objetivo que tú con tanto afán persigues?, se expresará, en general con precaución para que los filósofos no le consideren como un hombre ingenuo. Dirá poco más o menos: "tratamos de construir un sistema lógico que nos permita reunir unívocamente, sobre la base de la causalidad, las experiencias sobre los sucesos del mundo físico, de tal modo que se pueda predecir la marcha de los fenómenos". Esto es seguramente cierto; pero la respuesta no expresa aquella faz del problema que el investigador, con pasión, juzga (o considera) su tema. Quiere éste comprender los fenómenos y conocer su esencia; desea adquirir de los procesos de la naturaleza el mismo concepto que se adquiere, por ejemplo, de la construcción y del funcionamiento de un telar o de una máquina de imprimir. Trata de reducer la enorme multiplicidad de los fenómenos físicos a la acción, rigurosamente regida por leyes, de cosas muy sencillas. A medida que el investigador se aproxima a ese ideal, experimenta el grato sentimiento de haber comprendido los fenómenos de la naturaleza en su esencia.

Pero la tarea del físico teórica se distingue también, en cierto sentido, de la del hombre que quiere adquirir un concepto claro de un telar. Este último puede, en efecto, advertir directamente cuál es la construcción del telar. Ve, enseguida, si en un lugar determinado, existe una rueda dentada, un cilindro o una palanca. Tampoco es para él un misterio la naturaleza ni el modo de las acciones recíprocas entre las diferentes partes. Sabe desde el principio en qué forma cada rueda afecta la otra, de qué modo un cilindro puede girar en el sitio en que está colocado, etc. Es diferente la situación del físico; éste no sabe de antemano si el calor es un fenómeno de movimiento, si los cuerpos se component de átomos, si hay que explicar los fenómenos electro-magnéticos como movimientos de una materia que llena el espacio, etc. Se asemeja a un hombre que no puede sacar el telar de una caja impenetrable para la mirada, y tiene que darse cuenta de su construcción a caso solo por el carácter del tejido o por el ruido que el telar produce cuando funciona. Tiene que "adivinar" qué órganos son los que conducen los hilos longitudinales y diagonales del tejido y los colocan en el lugar apropiado, y debe tratar de demostrar, por un análisis prolijo del ruido, que existen realmente lanzaderas que ciertos órganos hacen ir y venir entre las líneas de los hilos longitudinales. ¿No podrá decirse de tal hombre que investiga el modo de ser del telar en su esencia, aún cuando el conocimiento de su construcción interna será siempre hipotético? Conoce aquello que es "real" en la máquina con una mayor perfección que el se contenta con comprobar los fenómenos perceptibles por los sentidos que le ofrece un telar encerrado en una caja. ¿Ha conseguido la física teórica algo en el sentido indicado? ¿Es posible que llene por completo su misión? ¿Hay que contestar afirmativamente a la primera pregunta y probablemente en sentido negativo a la segunda? Esto se desprende del major modo acaso una breve consideración sobre el desarrollo de la física teórica.

La física teórica, tal como existe hoy, se inició hace menos de trescientos años con la teoría del movimiento en la forma en que la establecieron Kepler y Newton. Se podrá caracterizar su desarrollo, iniciado por estos dos hombres de ciencia, adaptando un programa somero para la construcción mencionada más arriba; la materia se compone de masas elementales (puntos materiales) muy pequeñas y eternamente variables. Todo lo que ocurre en la naturaleza es un movimiento de esos puntos, y el movimiento se efectúa de tal modo que la aceleración de cada punto queda determinada por completo por su posición momentánea con respecto a todos los demás. Una vez establecida la ley de esta dependencia (ley de fuerza), corresponde exclusivamente a la matemática la averiguación de los posibles fenómenos.

Fue enorme la fecundidad del método comprendido en este programa. Newton consiguió con el mismo, mediante su ley de fuerza de gravitación, en completa y sutil concordancia con la experiencia, la descripción del movimiento relativo de los cuerpos celestes, las variaciones periódicas de la dirección del eje alrededor del cual gira la Tierra (precesión), y las mareas. Los fenómenos del choque de los cuerpos, el modo de funcionar la máquina mecánico-técnica, las observaciones que se hacen con el péndulo y el giróscopo, en una palabra, todos los fenómenos de movimiento que se observan en los cuerpos sólidos podían predecirse matemáticamente. También los procesos provenientes de deformaciones en cuerpos pesados se pueden reconducir a esa base fundamental. Se podía hacer concordar con esta teoría las sondas de agua, los fenómenos de corrientes en líquidos, las sondas del sonido, las deformaciones elásticas y las oscilaciones de los
cuerpos sólidos y líquidos.

En la mecánica de los cuerpos rígidos y de los deformables se hacía uso solamente de las ecuaciones mecánicas, pero no de la hipótesis de que la materia se compone de puntos materiales (átomos). La mecánica podía desarrollarse sin hipótesis sobre la estructura final de la materia. Esto tiene la ventaja de que se puede operar con éxito mediante un número reducido de hipótesis, pero tiene también el inconveniente de no enseñarnos nada sobre la constitución íntima de la materia. Esta, que la reclamaron los atomistas de la antigüedad (Epicuro), desempeña un papel importante en las ciencias exactas solamente desde hace poco más de un siglo, y fueron ante todo la química y la mineralogía -ciencias que llevan hasta cierto punto una existencia aislada- las que en mayor grado que la física arrojaron penetrante luz sobre la cuestión.

La ley de las proporciones múltiples, según la cual las cantidades conque cada una de las sustancias químicas simples se combina con otra están en relaciones racionales simples, condujo a la teoría molecular de las combinaciones químicas.

La ley de los índices racionales en la cristalografía, que indica que las direcciones de las superficies planas límites que se producen en un cristal pueden expresarse por medio de combinaciones de números enteros según cierto esquema, llevó a la idea de que las materias sólidas se componen de partículas iguales (moléculas), que, cuando se encuentran en estado cristalino, se ordenan en redes regulares. Fueron éstos los primeros conocimientos, adquiridos de un modo indirecto, de la estructura fina de la materia. Quedó con todo esto completamente ignorado el tamaño de los átomos, el que fue deducido, por primera vez, de la teoría cinética del calor.

Cuando a mediados del siglo XIX fue reconocida la validez del principio de la conservación de la energía y, en particular, la transformabilidad cuantitativa del trabajo mecánico en calor, ganó también terreno la idea de que hay que concebir a éste como un movimiento irregular de las moléculas. Un siglo antes habían intentado algunos matemáticos explicar la presión de los gases sobre las paredes de recipientes, diciendo que las moléculas de los gases se mueven en una forma algo parecida a mosquitos en enjambres, chocando, por eso con las paredes del recipiente. Pero esta teoría cinética de los gases pudo ser realmente fecunda solamente un siglo más tarde, cuando estaba mucho más adelantado el conocimiento empírico de los fenómenos del calor.

Ella dio no sólo una relación numérica entre la presión y el contenido de calor, así como entre la conductividad del calor y la viscosidad (resistencia que se opone al deslizamiento), y una explicación del extraño fenómeno de que la resistencia y la conductividad calórico de un gas es independiente de su densidad -hechos confirmados por la experiencia después de que fueron predichos por esta teoría- sino que se permitió también conocer el tamaño verdadero y la masa de las moléculas y de los átomos. Veo en esto el mayor triunfo de las mecánica de Galileo y de Newton. Partiendo de lo que perciben los sentidos nos permite obtener conocimientos profundos e indudables de la estructura fina de la materia que quedarán siempre ocultos a la tosca percepción de aquellos.

La física teórica fundada en la mecánica de Galileo y de Newton perdurará eternamente en cierto sentido, lo que no significa que sea el último peldaño del conocimiento. Desde el principio le fue difícil crear una teoría utilizable de la luz que diese cuenta de todas las experiencias. La teoría corpuscular de Newton no dio una explicación que no fuese tomada de los fenómenos de refracción y de interferencia de la luz. La teoría de las ondas fundada por Huyghens -muy superior por sus resultados explicativos- tuvo el incoveniente de tener que recurrir al postulado de una materia inaccessible a los sentidos como objeto, el éter, el que debía ser mecánicamente análogo a los cuerpos sólidos que perciben aquellos, a los que, al mismo tiempo, debía penetrar. Por otra parte la electricidad era un serio escollo para el concepto mecánico del universo. La electricidad debía ser también una especie de materia, pero no cabían dentro del esquema de Newton las leyes que parecían regir sus efectos recíprocos.

Fue roto el marco que encerraba el sistema de Newton por la teoría de la electricidad de Faraday y Maxwell y su confirmación experimental por Hertz. Ya no podían considerarse realidades fundamentales de la física la masa y sus efectos a distancia.

Los reemplazó el campo electromagnético completado por complemento del campo de la gravitación. La teoría de la relatividad dio un consecuente de este sistema teórico, el que comprende el sistema de Newton, como aproximadamente suficiente para muchos problemas; no se pierde ninguno de sus resultados, pero se ensancha el radio de los fenómenos que se puede dominar.

Pero los principios fundamentales de la teoría de los campos tampoco permiten que se tenga un concepto claro de todo lo que se reconoce empíricamente. La teoría de Bohr, de los espectros, y los principios reunidos bajo la designación de "teoría de los cuanta", que en tan alto grado han perfeccionado nuestros conocimientos de la esencia de la materia y de su irradación, no parecen caber dentro de la teoría de los campos. Está formándose un nuevo fundamento teórico. Se conseguirá también dar este paso; pero gana terreno la convicción de que aunar la investigación de las cosas reales y de los fenómenos constituye un proceso que nunca llegará a su fin.

Einstein escribe esto unos meses antes de la "revolución" que desataría Heisenberg, con su nuevo formulismo y desarrollo de la mecánica cuántica, una solución que con los años no le gustaría a Einstein. Queda claro, en la exposición de arriba, cómo la ciencia fue avanzando en esos años, la importancia de la teoría atómica, el influjo del electromagnetismo (que "fuerza" prácticamente a Einstein plantear sus teorías de la relatividad), y la "teoría de los cuanta" (que el propio Einstein ayudó a cimentar, desde 1905, con su explicación del efecto fotoeléctrico). Y cómo también la teoría del calor ayudó, junto con la química, a desarrollar la idea de átomo y moléculas. Mucho de eso NO ESTABA en la física newtoniana, y el propio Newton tuvo dificultades en explicar los fenómenos de la luz. Sirva todo esto de ejemplo del avance de la ciencia, aun con retrocesos, y de la búsqueda continua de la explicación de la realidad física.

Encuentro este texto en un artículo de Nora Bar, para el libro "El universo de Einstein", compilado por Alejandro Gangui.

Ver también:

Einstein en la Argentina
Cuando Einstein estuvo viviendo en Lavallol
Hace 90 años, Einstein caminaba como un dandy por el barrio de Belgrano
Einstein, un genio suelto en la Argentina
Canal Encuentro - Einstein visita la Argentina

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
https://twitter.com/ajlopez

Por ajlopez, en: Ciencia

Publicado el 6 de Abril, 2019, 11:55

Anterior Post
Siguiente Post

Atención, pregunta: ¿Qué es una integral?
https://francis.naukas.com/2019/02/28/atencion-pregunta-que-es-una-integral/

Logistic map
https://twitter.com/johncarlosbaez/status/1102322497771331584
https://en.wikipedia.org/wiki/Logistic_map

Fifty Years of KdV: An Integrable System
https://arxiv.org/abs/1902.10267
The author discusses integrability of Hamiltonian dynamical systems in the aftermath of KdV.

The Math That Takes Newton Into the Quantum World
http://nautil.us/issue/69/patterns/the-math-that-takes-newton-into-the-quantum-world

The Horgan Surface and the Death of Proof
https://blogs.scientificamerican.com/cross-check/the-horgan-surface-and-the-death-of-proof/
Mathematicians take revenge on the author of a controversial article about proof by naming an object after him

Nash Letters
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/nash-letters/nash_letters1.pdf

New Caltech Professor Seeks Order in Chaos
http://www.pasadenanow.com/main/seeking-order-in-chaos/
A Q&A with Caltech's new mathematics professor Maksym Radziwill

Paradox of integration -- Dynamics of two-dimensional status
https://arxiv.org/abs/1903.04291

Nos leemos!

Angel "Java" Lopez
http://www.ajlopez.com
http://twitter.com/ajlopez